Necessity of EHV-AC transmission, Advantages and Problems

- Reduction of Electrical Losses, Increase in Transmission Efficiency, Improvement of Voltage Regulation and Reduction in Conductor Material Requirement
- Increase in Transmission Capacity of the Line
- Flexibility for Future System Growth
- Possibility of Interconnections of Power Systems

- With increase in the transmission voltage size of the conductors is reduced (Cross section of the conductors reduce as current required to carry reduces.
- With the increase in the voltage of transmission, the insulation required between the conductors and the earthed tower increases. This increase the cost of line support.
- With increase in the voltage of transmission, more clearance is required between conductors and ground.

Power handling capacity and line losses

			<u> </u>	-		
System kV	400	750	1000	1200		
Percentage, Power Loss Line Length, km	$\frac{50}{10.55} = 4.76$	$\frac{50}{20} = 2.5$	$\frac{50}{64.2} = 0.78$	$\frac{50}{85.6} = 0.584$		
	$P = 0.5E^2/Lx, MW$					
400	670	2860	6000	8625		
600	450	1900	4000	5750		
800	335	1430	3000	4310		
1000	270	1140	2400	3450		
1200	225	950	2000	2875		

Mechanical considerations-resistance of conductors

- Aeolian Vibration
- F=20065(v/d) Hz
- Galloping
- Wake-Induced Oscillation
- Dampers and Spacers

Properties of bundled conductors, bundle spacing and bundle radius

Calculation of Line and Ground Parameters

Resistance of Conductors

Line inductance

Inductance of Two Conductors

Fig. 3.6 Round conductor with internal and external flux linkages.

Effect of Resistance of Conductor

Power loss in transmission caused by I2R heating.

Table 3.1. I2R Loss in MW of E.H.V. Lines

Power Log

System kV	400	750	1000	1200	
Resistance, ohm/km	0.031	0.0136	0.0036	0.0027	
Power Transmitted	I ² R Loss, MW				
1,000 MW	48	25	7.8	5.84	
2,000	96	50	15.6	11.68	
5,000	240	125	39	29.2	
10,000	480	250	78	58.4	
20,000	960	500	156	116.8	

Skin Effect Resistance in Round Conductors

Table 3.1. I2R Loss in MW of E.H.V. Lines

System kV	400	750	1000	1200	
Resistance, ohm/km	0.031	0.0136	0.0036	0.0027	
Power Transmitted	I ² R Loss, MW				
1,000 MW	48	25	7.8	5.84	
2,000	96	50	15.6	11.68	
5,000	240	125	39	29.2	
10,000	480	250	78	58.4	
20,000	960	500	156	116.8	

Sequence inductances and capacitances

- Inductance Due to Internal Flux
- Inductance Due to External Flux
- Inductance of Multi-Conductor Lines— Maxwell's Coefficients

Different modes of propagation,

- Diagonalization Procedure
- The resolution of mutually-interacting components of voltage, current, charge, or energy in
- waves propagating on the multi-conductors depends upon diagonalization of the n × n impedance matrix. A general procedure is given here while their application to Radio Noise, Switching
- Surges, etc, will be discussed in later chapters when we consider these problems individually.
- First consider the diagonalization of the inductance matrix of a transposed line

•

Ground return and their examples

- (a) Flow of current during short circuits involving ground. These are confined to single
- line to ground and double line to ground faults.
 During three phase to ground faults
- the system is still balanced;
- (b) Switching operations and lightning phenomena;
- (c) Propagation of waves on conductors;
- (d) Radio Noise studies