Electrostatics —field of sphere gap

* A sphere-sphere gap is used in h.v. laboratories for
measurement of extra high voltages and for

e calibrating other measuring apparatus. If the gap spacing is
less than the sphere radius, the

e field is quite well determined and the sphere-gap breaks
down consistently at the same voltage

* with a dispersion not exceeding +3%. This is the accuracy of
such a measuring gap, if other

* precautions are taken suitably such as no collection of dust
or proximity of other grounded

* objects close by. The sphere-gap problem also illustrates
the method of successive images used

* in electrostatics.
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Field of line charges

* line charge of g coulomb/metre and we will calculate the
electric field

e strength, potential, etc., in the vicinity of the conductor.
First, enclose the line charge by a

e Gaussian cylinder, a cylinder of radius r and length 1 metre.
On the flat surfaces the field will

* not have an outward normal component since for an
element of charge dg located at S, there

e can be found a corresponding charge located at S' whose
fields (force exerted on a positive test

e charge) on the flat surface F will yield only a radial
component. The components parallel to the

* line charge will cancel each other out.
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Properties Charge

 The properties of electric field of almost all electrode
geometries will ultimately depend on that

e of a point charge. The laws governing the behaviour of
this field will form the basis for extending

 them to other geometries. Consider Figure 4.1 which
shows the source point S1 where a point

e charge + Q coulombs is located. A second point charge
g coulomb is located at S2 at a distance

* rmetre from S1. From Coulomb's Law, the force acting
on either charge is




potential relations for multi-
conductors

e charge-potential relations of a transm ission
line with n conductors on a tower. The effect
of a ground plane considered as an
equipotential surface gave rise to Maxwell's
Potential coefficients and the general
equations



Surface voltage gradient on conductors
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Distribution of voltage gradient on sub
conductor of bundle

 The method described before for calculating
voltage gradients for a twin-bundle conductor,
N = 2, can now be extended for bundles with
more than 2 sub-conductors. A general
formula will be obtained under the
assumption that the surface voltage gradients
are only due to the charges of the N sub-
conductors of the bundle, ignoring the
charges of other phases or poles and those on
the image conductors.



Distribution of voltage gradient on sub
conductor of bundle-examples

* The cosine law has been verified to hold for
bundled conductors with up to 8 sub-conductors.
Only the guiding principles will be indicated here
through an example of a 2-conductor bundle and
a general outline for N 3 3 will be given which can
be incorporated in a digital-computer
programme.

* detailed view of a 2-conductor bundle where the
charges g on the two sub-conductors are
assumed to be concentrated at the conductor
centres.



