SWITCHING THEORY \&LOGIC DESIGN
UNIT-I NUMBER SYSTEMS, BOOLEAN ALGEBRA \& SWITCHING FUNCTIONS

ASSIGNMENT I

1. a) What are the rules to be followed for 1 's complement \& 2 's complement subtraction. Determine 90.2-124.6 using l's \& 2's complement.
b) Show that 246.5_{10} is $=F 6.8_{16}=366.4_{8}=11110110.1_{2}$
2. a) Compare weighted \& Non-weighted codes with suitable example?
b) Encode 32.89_{10} to BCD code and Gray code?
3. a) Compare Error Detection \& Error Correction.
b) Derive Hamming code for sequence 10100101
4. a) State various Boolean axioms, Laws and Theorems?
b) Apply various Boolean Law's to Prove that $A \cdot \bar{B} \cdot C+\bar{B}+\bar{B} \cdot D+A \cdot B \cdot D+A \cdot C=B+C$
c) Obtain Dual and complement of function $F(A, B, C, D)=A^{\prime} B+A^{\prime} B C^{\prime}+A^{\prime} B C D$.
5. a) Define and compare various forms of representing switching functions?
b) Develop Minimum and Maximum terms of $F(A, B, C, D)=A^{\prime} B+A B^{\prime} D+C^{\prime} D$.
6. a) Explain Universal Gates? How would you realize And, Or, Not, XOR \& XNOR gates using Universal gates.
b) What are properties of XOR Gate?
b) Design a circuit to implement function $f(a, b, c, d)=\sum m(0,2,4,6,9,11,13,15)$
