SWITCHING THEORY & LOGIC DESIGN

UNIT-I NUMBER SYSTEMS, BOOLEAN ALGEBRA & SWITCHING FUNCTIONS

ASSIGNMENT I

- a) What are the rules to be followed for 1's complement & 2's complement subtraction.
 Determine 90.2 -124.6 using I's & 2's complement.
 - b) Show that 246.5_{10} is = $F6.8_{16} = 366.4_{8} = 11110110.1_{2}$
- 2. a) Compare weighted & Non-weighted codes with suitable example?
 - b) Encode 32.89₁₀ to BCD code and Gray code?
- 3. a) Compare Error Detection & Error Correction.
 - b) Derive Hamming code for sequence 10100101
- 4. a) State various Boolean axioms, Laws and Theorems?
 - b) Apply various Boolean Law's to Prove that A.B.C+B+B.D+A.B.D+A.C=B+C
 - c) Obtain Dual and complement of function F(A,B,C,D)=A¹B+A¹BC¹+A¹BCD.
- 5. a) Define and compare various forms of representing switching functions?
 - b) Develop Minimum and Maximum terms of F (A, B, C, D)=A¹B+AB¹D+C¹D.
- 6. a) Explain Universal Gates? How would you realize And, Or, Not, XOR & XNOR gates using Universal gates.
 - b) What are properties of XOR Gate?
 - b) Design a circuit to implement function $f(a,b,c,d) = \sum m(0,2,4,6,9,11,13,15)$