
P6	P6 P6 P6 P6 P6 F											
Code	No: 117AB R13											
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD												
	B. Tech IV Year I Semester Examinations, November/December - 2017											
	ADVANCED FOUNDATION ENGINEERING	****										
	(Civil Engineering)											
Time: 3 Hours Max. Marks: 75												
Note:	This question paper contains two parts A and B.											
	Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B											
	consists of 5 Units. Answer any one full question from each unit. Each question carries 10											
	marks and may have a, b, c as sub questions.											
P6	P = PART-A $P = PART-A$ $P = PART-A$,-										
1.a)	Give examples for footing subjected to eccentric loading. Also discuss about modified											
	width of footing due to load eccentricity. [2]											
b)	Write the assumptions of Mayerhof's theory of bearing capacity. [3]											
c)	Define pile group and draw a pile group which is possible with minimum number of piles. V											

₽(n d)	A 6m long and 0.3m diameter pile is fully embedded in soft clay where complete adhesion											
· · · · · · · · · · · · · · · · · · ·	is possible. If the UCS of clay is 100 kPa, estimate the shaft friction load [3]											
e) f)	List assumptions of Rankine's theory of eath pressure. [2] Why shear key is provided beneath the base of the retaining wall? Discuss how its depth is											
1)	estimated. [3]											
g)	Draw the typical pattern of deformation of vertical walls: i) anchored bulk head, ii) Braced γ											
<i>5)</i>	- cut and iii) Tieback – cut. [2]											
(h)	Define Strut and Wale [3]											
- () i)	Define swelling pressure. Comment whether a building can be lifted up or not when											
	bearing capacity of soil is higher than the swelling pressure. [2]											
j)	Write a note on sand cushion technique in swelling soils. [3]											
	PART-B											
. •	(50 Marks)											
DA												
()2.a)	Define and discuss the importance of Safe bearing capacity and Allowable bearing capacity in the design of foundation.											
b)	A square footing is to be designed for a safe load of 350 kN. If the load is inclined at an											
0)	angle of 15 ⁰ to the vertical, determine the width of the foundation. Take a factor of safety											
	of 3.0 and use Vesic's equation. The following are the soil properties: unit weight of											
	soil = 19 kN/m ³ , angle of internal friction of soil is 35 ⁰ and cohesion is 5 kPa. The depth											
إراسين المستعمل	of foundation is 1.25m. Assume no water table effect. The bearing capacity factors are:											
D/A	$N_c = 46.12$, $N_q = 33.3$ $N_v = 48.03$. For square footing:											
	Shape factors are: $s_c = 1 + (N_q/N_c)$, $s_q = 1 + \tan \phi$ and $s_Y = 0.6$.											
	Depth factors are: $d_c = 1 + 0.4(D_f/B)$, $d_q = 1 + 2 \tan\phi(1-\sin\phi)^2(D_f/B)$, $d_Y = 1.0$; and											
	Inclination factors are: $i_c = i_q = [1 - (\alpha/90)]^2$, $i_Y = [1 - (\alpha/\phi)]^2$ [3+7]											
	OR											
	no ne ne ne ne l	****										
	- HO - HO - HO - HO - HO - I	-										

•

P6	P6	P6	P6		6	P()	P6			
3.a) b)	Square footing loose to media		n is founded at vith net load int	a depth censity of data.	135 kPa. \$ \$\begin{align*} \begin{align*} \cdot \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Standard (Cone Pene				
P6	weights of soi	le is at the base 1 are 16.5kN/m ³ period of 4 year lasticity of the θ m (= H).	, and 19kN/m ³ rs. Use the eq	. Comput uation, E	e the elast $= 4q_c$	tic settlen kN/m², fo	ent that ca or computi the compr	n take ng the			
4.a) b)	A raft footing normally cons 20 kN/m³, couniformly distinguare format 15m, 0.45m apiles is 0.6 m settlement of	is founded at a solidated clay has ompression indecributed load of ion such as 9x9 and 2.5 m respective. The water tab the piled raft ex	depth of 3.5 n ving the follow x of clay 0.3 125 kPa. It is spile group. The policy is located at actly 5m below	n below the ving property of the supported to be length, or the group the pile of the pile	he ground erties; satu void ratio by a groudiameter a of the rational level.	urated units of 81 pand spacir to beyond Estimate level. Ass	t weight of The raft callies arrang ag of the potential the edges the consolume that the	f soil = ded in a ded idation ded			
5.a)	settlement of the piled raft exactly 5m below the pile group tip level. Assume that the load dispersion starts from a height of 1/3 of pile length from the pile tip. Assume also 2:1 distribution for vertical stress calculation. Distinguish short and long pile. Explain with neat sketches the defelection and bending behaviour of laterally loaded free headed and fixed headed short and long pile. Discuss with charts and formulae the procedure of estimation of lateral capacity of piles in clay as per the Broms theory. [5+5]										
6 A () b)	active earth p A retaining 18 kN/m ³ . Th	the surcharge or ressure. () wall 5m high e backfill has an termine the tota	with a vertice agle of internal al active thrust	al back s	supports a 80°, wall f	a horizor riction 18	tal fill w o, and coh graphical r	eighing esion is			
7.a) b)	Check the sta	modes of faulire ability against o der the passive i	verturning and	bearing_	ain them pressure o	with neat of the reta	ining wal	1 shown 4+6]			
P6	P6	P6	P6		26	P	6	P6			

