.6	Code No: 131AK	R16	£.,
ļÜ,	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERAB B. Tech I Year I Semester Examinations, December 2016 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING (Common to EEE, ECE, CSE, EIE, IT)	AD:	
	Times 2 harres	larks: 75	
	Part A is compulsory which carries 25 marks. Answer all questions in Part B consists of 5 Units. Answer any one full question from each uniquestion carries 10 marks and may have a, b, c as sub questions.	Part A. t. Each	
	PART- A	Marks)	
· (*)	 1.a) What is the significance of j- notation in analysis of A.C circuits? b) Obtain the V-I relationship for passive elements. c) What is the relation between bandwidth and quality factor in RLC series resonant 	[2] [3] circuit?	
IG *	e) What is a bleeder resistance? Why it is used in L-C filter? f) Determine AC resistance for a semiconductor diode with a forward bias of Reverse saturation current at room temperature is of 1.2µA.	[2]	**************************************
G	g) What is thermal runaway in transistor amplifier circuit? h) — In a transistor determine base current if emitter current is 1.00 mA and collector circuit. i) — 0.92 mA. — — — — — — — — — — — — — — — — — — —	[2] urrent is [3] [2] lifier?	
	PART-B	[3] Marks)	
	2.a) Find equivalent resistance R _{ab} in figure 1. Resistor values are in ohms.		
) H(2 * ~ v
	R _{ab}		
	b 2 2 2 2 2 2 2 3 2 Figure: 1	i "Fig	**,
" "	AG AG AG AG	i Fic	 :::

lä	b) "A fu	is the diffusion ill-wave fectifier tance of 600Ω.	capacitănce neg uses à double d The transformer	ligible for a rever diode with each r.m.s secondary	rse-biased diode? element having voltage from the	a constant forward centre tap to each dc output power	427
	ii) ac to fu 7.a) Drav iii) r b) A ha trans	tinput power iii Il-load. v the circuit diag ipple factor iv) e alf-wave rectifier former have a to / (peak value), de	the rectification ram of a full-war fficiency of rectire has a load restoration resistance of the restoration of the rectification	or efficiency and or efficiency and very property of $4K\Omega$. In the same of $4K\Omega$, and the property and $4K\Omega$, average and $4K\Omega$.	iv) voltage reguler circuit and calc IV rating of diod If the diode and input voltage h m.s values of cur	ation from no load [5+5] [5+5] [10] [11] [12] [13] [14] [15] [15] [15] [15] [16] [17] [17] [18] [18] [18] [18] [18] [18] [18] [18	AC
	How	would you calcu	alate the input dy	namic resistance	NPN transistor. It of the transistor aracteristics in C		
È	$\begin{array}{c} \text{with} \\ \text{b)} \text{A con} \\ & \text{h}_{\text{ie}} = 1 \\ & \text{source} \end{array}$	emitter and refer mmon emitter tra 1000Ω; h _{fe} =50, h	ence ground iii) ansistor amplifier $h_{re}=2.5\times10^{-3}$, $h_{oe}=100\Omega$. Find the i) fixed bias ii) fipotential divider circuit has the f =25×10 ⁻⁶ A/V. If	bias. ollowing characte the load resistar	sistor R_E in series eristics: ace $R_L=10 \mathrm{K}\Omega$ and e and the voltage, [5+5]	
	basic b) Wher	differences between gate; source vol	een BJT and JFI	ET? gate cürrent is 1 JFET.		ams what are the ine the resistance [6+4]	
				OR d as voltage regu s of SCR and Tu		[5+5]	
* * * * * * * * * * * * * * * * * * *	FC	FG		00O00	AG	FL	* d d
			(00000			
	MG		AG	AC	PE	AG	\$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0 \$ 0
	MGi	AG	AC.	AC	n.	AG	*** *** *** *** *** *** *** *** *** **
7 ****	* * ****	¥ 3 ****\$	ě x xxxx		y + ++x+	A A 0.5.7.4	