AG AG AG AG AG AG A

			/ '
Code No: 136AQ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD R. Tash H. Year H. Sameston Evaminations, November (Accomban, 2020)			
A	B. Tech III Year II Semester Examinations, November/December - 2020 COMPILER DESIGN (Common to CSE, IT) Max. Mai Answer any five questions	rks: 75	A
All questions carry equal marks			
$\triangle \stackrel{\text{(1.a)}}{-} b$	What are functions of lexical analyzer? Construct DFA for the regular expression (a+b)* aa \(\alpha \) aba*.	[7,±8]	Δ
2.a) b)	Explain the concept of input buffering. Construct a finite automata for (00)*(11)*.	[7+8]	/ \
3.	Construct LL(1) parsing table for the following grammar		
AG	$S \rightarrow CC$ $C \rightarrow cC \mid d$, where S is start variable, $V = \{S, C\}$, $T = \{c, d\}$. Write and apply $LL(1)$ parsing algorithm to parse the string cdcd.	(A)(C)	
4.	What is shift - reduce conflict? Identify different conflicts in the SLR parsing the grammar after constructing parsing table, where S is start variable, $V = \{S, T = \{a, b, c, d\}\}$.		
AG		AG	A
5.a) b)	Briefly write about abstract syntax tree. Perform Quadrupple, tripple, Indirect triple implementation for the infix exp (c+d) * (c+-d) + (c+d).	ression [7+8]	
△(5.a) (b)	Convert the following arithmetic expression into syntax tree and three address (a+b)*3*(a+b) — — — — — — — — — — Explain about Inherited attributes and synthesized attributes.	ss code [8+7]	Д
7.a) b)	Explain the stack allocation strategy with example. Briefly explain different techniques for optimization of basic blocks.	[7+8]	
AG**	Explain different principal sources of code optimization.	[15] AG	Д
ooOoo			
AG,	AG AG AG AG	AG	A