R16 Code No: 134AP JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, April - 2018 DATABASE MANAGEMENT SYSTEMS (Common to CSE, IT) Time: 3 Hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. (25 Marks) How to represent the strong Entity set and Weak entity set in ER-Model? [2] 1.a) Explain about various integrity constraints in relational model. [3] b) What are the SQL statements are used to retrieve and modify the database? [2] c) Let R = (ABC) and S=(DEF) let r(R) and s(S) be relations on schema R and S. Give an d) expression in the Domain relational calculus that is equivalent to each of the following. [3] $ii)\prod_{A,F,(\sigma_{C=D}(rXs))}$ i) $\sigma_{B=25}(\mathbf{r})$ [2] What is schema refinement? e) [3] Define Multi valued dependencies and join dependency. f) [2] What is serilizabuilty? g) [3] Explain Failure with loss of nonvolatile storage. h) [2] What is primary and secondary indexing? i) [3] What is the difference between indexing and hashing? j) PART-B (50 Marks) [10] Give an overview of database architecture. 2. Give an overview of database languages - DDL and DML. 3.a) What are speciality databases? Explain. b) Explain the fundamental operations in relational algebra with examples. 4.a) What aggregate operators does SQL support? Explain with examples. [5+5]b) What is trigger? Explain how to implement triggers in SQL? 5.a)

AG AG AG AG AG AG AG

y) UNION.

Explain the following Operators in SQL with examples:

ii) IN

iji) EXCEPT

b)

i) SOME

AG AG AG AG AG AG AG

Z A South	/ \	***************************************	y y 2000 v	, , ,				
6.a) What do you mean by scheme refinement? Explain how it can be accomplished?b) What are the problems caused by redundancy and decomposition of relation?							[5+5]	
A () 7.4	a) Com	Compute the closure of the following set of functional dependencies for a scheme. R(A,B,C,D,E,F,G,H), F={AB→C, BD→EF, AD→G,A→H}. List the candidate keys of R. Explain 4NF, 5NF normal forms with examples.						A
1	b) Expl							
8.a) What is transaction? Explain the properties of transaction. b) Give an overview of validation based protocol.							[5+5] ^	Λ
A ()9.	a) Expl b) Expl	Explain about the Multiple granularity Concurrency Control protocol Explain about remote backup system.						
10).a) Give b) Desc	acompa	rison of various Insertion and De	file organizations	s. s in B+ trees.		[5+5]	
AG	. How	does Extended	extendable hashing	OR g use a directory	of buckets? How	w does it handles	the insert	A
				00O00				
AG	A		AG	AG	AG	AG	AG	A
AG	A(AG	AG	AG	AG	AG	A
AG	Д(AG	AG	AG	AG	AG	A
y s Smith E								
	Δ	~~~ <u>~</u>	AA	AA	AG	AG	AG	A
$/ \sim \sqrt{\lambda} / \sqrt{\lambda}$	/ \ \ \	· · · · · · · · · · · · · · · · · · ·	/ / \ \	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	The A. American	Z. A. Named	The American	I