Code No: 113BP

R13

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November - 2015 DATA STRUCTURES

	(Common to CSE, IT)	
Tin	10: 3 House	lax. Marks: 75
Not	e: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all question Part B consists of 5 Units. Answer any one full question fr Each question carries 10 marks and may have a, b, c as sub question.	om each unit
	PART -A	(25 Marks)
1.a) b) c)	Distinguish between Linear and Non Linear data structures. Write a recursive algorithm that finds all occurrences of a substring What is Stack? Give the declaration of all the functions implementation of a stack.	used in the
d)	Suppose a queue is represented by a circular array of size N, F and denote front and rear positions. If F points a location before fro queue and R points to last element of queue, how many elements a queue?	nt element of re there in the
e) f)	What are the ways in which a tree is represented in computer memory. What is the time complexity of DFS traversal as an n-vertex simple represented with adjacent matrix structure?	e graph that is
g) h)	Distinguish between tree and graph with an example. Consider an array of 100 sorted numbers. Almost how many search	
i) j)	to search an element using Binary search. Justify your answer. Define Binary search tree. What are the properties of binary search to Explain the compressed trie with an example.	[3] rce? [2] [3]
	PART-B	(50 Marks)
2.a) b)	Write a C function for insertion operation in a circular linked list. What is algorithm? What are the properties of an algorithm? performance analysis of an algorithm. OR	Explain the [5+5]
3.a) b)	Write an algorithm for deleting duplicate numbers from a linear array What is Sparse matrix? How Sparse matrices can be efficiently in memory?	represented [5+5]
4.a) b)	Write a function to convert a given singly linked list to doubly linked Explain about the operations of Queue with an example. OR	list. [5+5]
5.a) b)	Write a function to reverse elements. Explain the operations of circular linked list.	[5+5]
6.a)	Create a Heap and sort the following list of elements {12, 8, 10, 6, 24, 40, 6, 11, 9, 18, 14}	
b)	Explain the tree traversals with an example.	[5+5]

7.a)	Explain how BFS can be used to identify the connected coma graph with an example.	nponents in
b)	Write an algorithm that counts the number of nodes in a binary tree.	[5+5]
8.a) b)	Write a function double hash to resolve collisions using double hashing Explain the Radix sort with an example.	g. [5+5]
0)	OR	, ,
9.a) b)	Write an algorithm of Binary search. Insert the following list of elements in to the hash table by uprobing (size of hash table is 10)	ising linear
	{16, 23, 43, 18, 34, 59, 30, 22}	[5+5]
10.a)	How a node can be deleted from the binary search tree? Femethods.	Explain the
b)	Construct the B-tree of order 4 for the following list of elements {K, L, T, A, G, H, P, W, R, U, Z, C, Y, B, J, M, E} OR	[5+5]
11.a)	Construct the AVL tree with the following keys	
	{35, 36, 80, 85, 67, 89, 25, 16, 10, 14, 50}	
b)	Write an algorithm of KMP.	[5+5]

---000000---