R13

Code No: 113BS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December-2014 DIGITAL LOGIC DESIGN

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	Part- A	(25 Marks)
1.a)	What are the simplest technique for detecting errors?	[2M]
b)	What are the basic operations in Boolean algebra?	[3M]
c)	What is race around condition? How it is avoided?	[2M]
d)	What is maxterm?	[3M]
e)	What is a ripple carry-adder?	[2M]
f)	What is a priority encoder?	[3M]
g)	What is a full modulus counter?	[2M]
h)	What are the various methods used for triggering flip-flops?	[3M]
· i)	What are types of ROM?	[2M]
j)	What is PLA?	[3M]
	Part- B	(50 Marks)

- 2.a) Covert 105.15₁₀ to binary, octal, hexadecimal.
 - b) What is hamming code? How is the hamming code word tested and corrected.

OR

- 3.a) Simplify the following Boolean expressions using the Boolean theorems.
 - i) (A+B+C)(B'+C)+(A+D)(A'+C)
 - ii) (A+B) (A+B') (A'+B)
 - b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates.
- 4.a) Simplify $Y = \sum m(3, 6, 7, 8, 10, 12, 14, 17, 19, 20, 21, 24, 25, 27, 28)$ using K-map method.
 - b) Obtain
 - i) minimal SOP and
 - ii) minimal POS expressions for the following function

$$F(A, B, C, D) = \sum_{i=1}^{n} m(0, 1, 5, 8, 9, 10)$$

OR

5. Obtain the minimal SOP expression for the switching function using k-map. $Y = \sum m(1, 5, 7, 13, 14, 15, 17, 18, 21, 22, 25, 29) + \sum d(6, 9, 19, 23, 30)$ Draw and explain the logic diagram.

- 6.a) Draw the schematic diagram and truth table for full adder. Explain the design approach for full adder using universal gates. Draw the relevant logic diagrams with necessary expressions.
 - b) Draw and explain the operation of 2's complement adder-subtractor.

OR

- 7.a) Explain the differences between a MUX and a DEMUX. Realize 16-input multiplexer by cascading of two 8-input multiplexers 74151.
 - b) Realize the function $f(A, B, C, D) = \prod (1, 4, 6, 10, 14) + d (0, 8, 11, 15)$ using i) 16:1 MUX ii) 8:1 MUX.
- 8.a) What is meant by 'edge triggered'? Differentiate SR-FF and JK-FF with their functional operation and excitation tables.
 - b) Draw and explain the circuit diagram of positive edge triggered J-K flip-flop using NOR gates with its truth table. How race around conditions are eliminated?

OR

- 9.a) Discuss about synchronous and ripple counters. Compare their merits and demerits.
 - b) What do you mean by universal shift register? Draw and explain its circuit diagram and operation.
- 10.a) Tabulate the PLA programming table for the following Boolean functions.

 $A(x, y, z) = \sum m(0, 2, 3, 7)$

 $B(x, y, z) = \sum m(1, 3, 4, 6)$

 $C(x, y, z) = \sum m(1, 4)$

Draw and explain the relevant logic diagram.

b) Design, draw and explain 128 × 8 ROM using 32×8 ROM.

OR

- 11.a) Using PLA logic, implement a BCD to excess-3 code converter. Draw and explain its truth table and logic diagram.
 - b) Explain in brief, about logic construction of 32×4 ROM. Draw and explain the relevant logic diagram.