AG AG AG AG AG AG A | Cod | e No: 117CD | R13 | | | | | | | | |---|---|--|---|--|--|--|--|--|--| | Tim
Note | Trans. Irans. | Ass: 75 | A | | | | | | | | AG | AGAGAAGAAGAAG | 5 Marks) | A | | | | | | | | 1.a) b) c) d) e) f) g) h) i) | Define data warehouse. List the Data warehouse Characteristics. How can you go about filling in the missing values for this attribute? Why is the word data mining a misnomer? Give a note on Closed Frequent Item Set. Write the FP-graph algorithm. How prediction is different from classification? What is rule classification? Give a note on k means algorithm. List the Key Issues in Hierarchical Clustering. | [2]
[3]
[2]
[3]
[2]
[3]
[2]
[3]
[2]
[3] | A | | | | | | | | AG | AG AG PARTEBI AG AG | AG | À | | | | | | | | 2.a) Make a comparisons between the MOLAP and HOLAP. (50 Marks) | | | | | | | | | | | b) | Discuss the star and snowflake schema in detail with suitable example. | [5+5] | | | | | | | | | 3.a)
b)
4. | Write the difference between designing a data warehouse and an OLAP cube. Give a brief note on ROLAP. Explain concept hierarchy generation for the nominal data. OR | [5\frac{1}{2}]
[10] | A | | | | | | | | 5.a)
b) | Describe the Feature Subset Selection. Illustrate the Data Transformation by Normalization. | [5+5] | | | | | | | | | AG . | AG AG AG AG AG | AG | A | | | | | | | | 4G , | AG AG AG AG | AG | A | | | | | | | ## AG AG AG AG AG AG A | 6.
AG | | al databases. App
LIST
Bread
Onion
Milk,
Chilli
Bread | riori and ECLAT
oly these algorithm
OF ITEMS
I, Milk, Sugar, Te
n, Tomato, Chillie
Cake, Biscuits, C
es, Potato, Milk,
I, Jam, Mik, Butte
r, Cheese, Paneer, | aPowder, Cheese
es, Sugar, Milk
Theese, Onion
Cake, Sugar, Bre
r, Chilles | ng data:
e, Tomâto | J | Δ | | |----------|------------------------|---|--|---|-----------------------|-----------------------|---|--| | AG. | 7
A
Briefly expl | Onion | Algorithms. | Garlic, Milk | | | | | | 8. | | Discuss K- Nearest neighbor classification-Algorithm and Characteristics. OR How does the Naïve Bayesian classification works? Explain in detail. | | | | | | | | 9. | | note on PAM Al
drawback of k | lgorithm | * | | [10] gorithm to [5+5] | A | | | 11. | What are the | different cluster | OR
ring methods? Exp | plain in detail. | | [10] | | | | AG | AG | AG | ∕ -06Ô60 | AG | AG | AG | A | | | AG A | | | AG | AG | AG | A'G' | AG | AG | AG | A | | | AG A | |