Code No: 131.5 C JAWA ARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDER BAD B. Tech I Year I Semester Examinations, May/June - 2017 ENGINEERING PHYSICS (Common to CE, ME, MCT, MMT, MIE, CEE, MSNT)	7							
Time: 3 hours Max. Marks: 75								
Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.	1							
Part- A (25 Marks)								
1.a) What are the conditions to get the interference of light? (b) What is a plane diffraction grating? Explain. (c) State and explain Brewster's law. (d) Distinguish between spontaneous and stimulated emissions. (e) Distinguish between the single mode and multimode optical fiber. [2]	/							
f) Find the numerical aperture of an optical fiber having a core refractive index of 1.6 and								
cladding refractive index of 1.50. [3]								
g) Define unit cell and lattice parameters: h) What are Miller indices? Explain. i) What are Laue spots? Explain. j) What are grain boundaries? Explain. [2] [3] [3]	/							
Part-B (50 Marks)								
2.a) Discuss the formation of interference fringes in a thin wedge-shaped film. Explain what will happen when the air in the inter space is replaced by a transparent liquid in Newton's rings experiment. c) Find the thickness of a wedge-shaped air film at a point where fourth bright fringe is situated. Wavelength of light is 589.3 nm. OR	/							
3.a) Describe how would you employ a plane diffraction grating to determine the wavelength								
of light. b) How many orders will be visible if the wavelength of incident light is 500 nm and the number of lines on the grating is 2620 in one inch?	/							
4.a) State and explain Malus's law.b) Explain how a quarter wave plate and a half wave plate could be constructed. Describe their properties.								
c) Calculate the thickness of a mica sheet required for making a quarter wave plate for 546 nm wavelength. The indices of refraction for the ordinary and extraordinary rays in mica are 1.586 and 1.592 respectively. OR	/							
5.a) What are Einstein's coefficients?								
b) Obtain a relationship between them.c) Explain the role of optical resonator in a laser. [3+4+3]								
. AG AG AG AG AG AG	/							

AG	b) / Wh	nat are the char optical fiber h	acteristics of a as a numerica	m optical fibe I aperture of	r? / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	within an opticaling refractive income fractive index of	ex of 1.59.		
AG	7.a) Discuss the advantages of optical communication system over the convention communication system. b) Give the block diagram of Optical fiber communication system explaining the of different blocks. c) Explain the principle of any two fiber optic sensors.								
AG	8.a) What is meant by atomic packing factor? Calculate the atomic packing factor for SC and BCC structures. Sodium crystallizes in a cubic lattice. The edge of the unit cell is 4.3 Å. The density of sodium is 963/Kg/m³ and its atomic weight is 23. What type of unit cell does sodium form? OR								
AG	b) In a and plan	crystal a lattic c are primitive:	te plane cuts in the vectors of the vectors of the vectors of the vectors of the vectors and the vectors of the	ntercepts of 1 the unit cell. he powder maiffracted in a	Determine the I	ng the three axes Miller indices of nation of crystal meter at an angle	the given [6+4] structure.		
AG	b) "Drav	lain edge and s w.Burger's circ at is the signific	cuit for an edg	e dislocation	diagrams. and screw disloc	ation.	[4+3+3]	,	
AG	<u>A</u> (3 A	G/	ooOoo _\		AG	AG	į	
AG	<u></u> (j A	G/	<u> </u>	AG	AG	AG	/	
AG	<u>A</u> (j A	G /	40	AG	AG	AG		