Code No: 126EE

R13

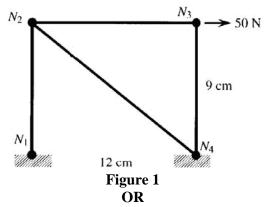
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech III Year II Semester Examinations, May - 2016 FINITE ELEMENT METHODS (Common to ME, AE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A (25 Marks)


1.a)	What is the principle of finite element method?	[2]
b)	Write the stress strain relations for 2 D plane stress and plane strain conditions.	[3]
c)	Differentiate between truss and beam element based on degree of freedom.	[2]
d)	What is Hermite shape function?	[3]
e)	Write the formula for the load vector of a triangular element subjected to body for	orce.
		[2]
f)	What is the size of the stiffness matrix for axisymmetric triangular element?	[3]
g)	What is the degree of freedom for the thermal problems?	[2]
h)	Where do you apply finite element analysis for thermal problems?	[3]
i)	Explain convergence requirement.	[2]
j)	Explain the importance of lumped mass matrix.	[3]

PART - B (50 Marks)

- 2.a) Why polynomial type of interpolation function is preferred over trigonometric functions? Explain.
 - b) Draw the Pascal's triangle and Pascal's tetrahedron for understanding the interpolations functions. Explain the salient features. [5+5]

OR

- 3.a) Explain the steps involved in obtaining an approximate solution using finite element method.
 - b) Explain the equilibrium state of the system, when the system is subjected to different types of loads and explain the stress and equilibrium relations. [5+5]
- 4. For a two-dimensional truss structure, as shown in the figure 1, determine displacements of the nodes and normal stresses developed in the members using FE. Use $E = 30 \times 10^6 \text{ N/cm}^2$ and a diameter of the circular cross-section of 0.25 cm. [10]

- 5. A beam is fixed at one end and supported by a roller at the other end, has a 20 kN concentrated load applied at the centre of the span of 10 m. Calculate the deflection and slope and also construct shear force and bending moment diagrams. Take $I = 2500 \text{ cm}^4$ and E = $20 \times 10^6 \text{ N/cm}^2$.
- 6.a) Evaluate the axisymmetric stiffness matrix \mathbf{K} of the triangular element shown in the figure 2. Consider the coordinates of nodes as 1 (2, 1), 2 (4, 0), and 3 (3, 2). Also assume E = 2.6 GPa and v = 0.2.

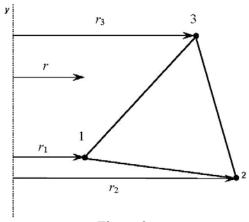


Figure 2

Differentiate between CST and LST with respect to the triangular element.

[5+5]

- 7. Derive the stiffness matrix for the four noded quadrilateral element in terms of natural coordinate system. [10]
- Consider a brick wall of thickness 0.3 m, k=0.7 W/m K. The inner surface is at 28°C 8. and the outer surface is exposed to cold air at -15°C. The heat transfer coefficient associated with the outside surface is 40W/m^2 K. Determine the steady state temperature distribution within the wall and also the heat flux through the wall. Use two elements and obtain the solution. [10]

OR

- 9. Derive the conductivity matrix for two dimensional triangular element subjected to convection on one face of the element.
- 10. For the stepped bar shown in the figure 3. Develop the global stiffness and mass matrices and also determine the natural frequencies and mode shapes. Assume E = 200 GPa and mass density = 7850 kg/m³, $L_1 = L_2 = 0.3$ m, $A_1 = 350$ mm², $A_2 = 600 \text{ mm}^2$. [10]

- 11.a) Derive the shape functions for the four noded tetrahedron element from the first
 - Discuss the importance of semi automatic meshing and auto mesh along with the practical applications. [5+5]

principles.

---00000---