

Code	No: 126VE	R		
A Time:	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSIT B. Tech III Year II Semester Examinations, April - FINITE ELEMENT METHODS (Common to AE, MSNT, ME) 3 hours		AG	_
Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questionsists of 5 Units. Answer any one full question from each unit 10 marks and may have a, b, c as sub questions. PART - A	Each question of	carries	<u> </u>
1.a) b) c) d) e) f)	What boundary conditions are imposed for 1 Dimensional bar electric Discuss the shape functions of one dimensional quadratic element. Write the hermitian shape function of a beam element. How local and global coordinates are related in a truss problem. What are the properties of a triangular coordinates. Write the strain displacement equation of axisymmetric problems coordinate system. List one requirement which is sufficient for convergence for a place.	t. Susing a cylindric	[2] [3] [2] [3] [2] cal [3] [2]	A
h) i) j)	Write governing differential equation for two dimensional heat tr Describe the features of NISA software. Differentiate lumped and consistent mass matrix. PART - B	ansfer problem	[3] [2] [3] [arks)	<u> </u>
2. ДЗ.	Derive the stiffness matrix and consistent load vector in dimensional quadratic element. OR Explore the stress strain relation for 2D and 3D elastic problems.		r one [10]	A
4.	Determine the nodal displacement of the following truss as shown	n in figure 1.	[10]	
AG /	3 20+N 3 20+N 20 45 25 25 25 25 25 25 25 25 25 25 25 25 25	AG	AG	<u> </u>
	$\triangle \bigcirc \triangle \bigcirc \triangle \bigcirc \triangle \bigcirc \bigcirc$			Δ

AG AG AG AG AG AG A

AG AG AG AG AG AG A

