AG AG AG AG AG AG AG Code No: 1260V

JAWARARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year II Semester Examinations, May - 2017 FOUNDATION ENGINEERING

A Tim	ne: 3 hours (Common to CE, CEE) Max. Marks: 75
Note	e: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.
AG	AG AG PART-A AG AGENERAL ACTION ACTIO
1.a) b) c) d) e) f) g) h) i)	Define area ratio. Define outside clearance. What are types of slope failures? Write the Taylors stability number. What is earth pressure at rest? What are the different types of retaining walls? Define the net and gross bearing capacity. Define dynamic formulae of Danish. List the different shapes of well foundations. What is the permissible flit of well foundations? [2] [3] [2] [3] [2] [3] [2] [3]
2.a) b)	PART - B Explain briefly Standard penetration test. Determine the passive pressure by Rankine's theory per unit run for a retaining wall 4m high, with $i=15^{\circ}$, $\Phi'=30^{\circ}$ and $\gamma=19$ kN/m ³ . The back face of the wall is smooth and vertical. OR
△ (3.a)	Explain the need for soil exploration and Illustrate methods of it. The field 'N' value in a deposit of fully submerged fine sand was 50 at a depth of 8 m. The average saturated unit weight of soil is 19 kN/m ³ . Calculate the corrected 'N' value. [5+5]
4.a) b)	Explain Bishop's simplified method. Derive an expression for the factor of safety. Determine the safe height of a slope which is to be constructed at an angle of 30^{0} with the horizontal. The required factor of safety with respect to both cohesion and angle of internal friction is 1.5, and the soil has the following properties: $C=10 \text{ kN/m}^{2}$, $\Phi=22.5^{0}$ and density = 20 kN/m^{3} . Taylor's stability numbers for mobilized friction angles of 22.5^{0} and 15^{0} are, respectively, 0.016 and 0.046. [5+5]
5.a)	How a slope is analysed using Swedish circle method? Derive an expression for the
b)	factor of safety. Determine the factor of safety with respect to cohesion, if an embankment of 20 m height and having a slope of 45% is subjected to sudden drawdown. C=20 kN/m², $\Phi=30^{\circ}$, $\gamma_{sa}=18$ kN/m³ (Take Taylor's stability number = 0.08).

