R15 Code No: 125EQ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, May - 2018 GEOTECHNICAL ENGINEERING (Common to CE, CEE) Time: 3 hours Max. Marks: Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. A fully saturated soil sample has a water content of 35% and specific gravity of 2.65. 1.a) Determine its porosity, saturated unit weight and dry unit weight. A clay soil has a liquid limit of 62% and plastic limit of 34%. Classify the soil as per b) the IS classification. The effective size of a silt is 0.01 mm. The void ratio is 0.7. What is the height of c) capillary rise of water in this soil? [2] d) Define the terms discharge velocity and seepage velocity. [3] e) State the Boussinesq's and Westergaard's theories for point load. [2] f) Explain briefly the mechanism of compaction. [3] g) How do you determine the pre-consolidated pressure? [2] h) Write a short note on stress history of clay. [3] i) Define the term dilatancy. Explain Liquefaction. PART - B (50 Marks) A clay soil has a liquid limit of 52%. The volume of the soil sample in the shrinkage 2.a) dish at the liquid limit is 0.0401 × 10⁻³ m³ and its shrinks to a volume of 0.0261 × 10⁻³ m³ at the shrinkage limit. The specific gravity of solids is 2.72. Determine the shrinkage limit of the soil. Write a brief note on soil formation. b) [5+5]

the shrinkage limit of the soil.

b) Write a brief note on soil formation.

OR

3.a) Distinguish between the residual soil and transported soil.

b) What are building blocks of clay minerals? Explain three common groups of clay minerals.

[5+5]

Discuss the different methods to determine the permeability of a soil sample?

A saturated sand layer over a clay stratum is 5m in depth. The water is 1.5 m below ground level. If the bulk density of saturated sand is 1.8 g cc⁻¹, calculate the effective

5.a) Discuss briefly the merits and demerits of different methods determining permeability and special applications.

b) Write a short on characteristics of flow net. Give its uses.

and neutral pressure on the top of the clay layer.

[5+5]

[5+5]

AG	AG	AG	AG	AG	AG	AG	
A province	vertical pro axis of loa distance of Discuss the	rated point load of essure at a depth ding. What will be 2 m from the axi e factors which af riefly about New riefly about New results.	of 10 meters belove the vertical properties of loading? Use fect compaction of OR	ow the ground suessure at a point of the work of soils in emband	arface, and situate at a depth at 5 m alysis taking μ = kments.	ed on the	<u> </u>
8.a l		How do you estimate the field e-p curve of an over consolidated clay? Briefly explain the physical meaning of the coefficient of consolidation. [5+5]					
	n) Why does i Explain the	t take infinite tim Terzaghi's 1-Đ c		onsolidation to ocory.	cur?	[545]	A
AG 11.	than the crit b) A vane of 8 at the botto Determine t several time of the clay. a) Discuss the of a foundat	on mm diameter and one of a bore holder and the ultimate type of laboratory ion on saturated of	nd 160 mm heightle. The torque rar strength of the e torque was four OR y triaxial test you clay.	nt has been pushe equired to rotate e clay. After the to the 50 N-m would recomme	ed into an in-situe the vane was test, the vane was test. Estimate the se	soft clay 76 N-m. s rotated ensitivity [5+5] stability	Δ
AG '	b) Explain why from that pro	y the angle of fail edicted from Moh	r diagram at fail	ure.	t might differ mo	ore often [5+5]	A
			00O00				
AG	AG	AG	AG	AG	AG	AG	A
AG	AG	AG	AG	AG	AG	AG	A
AG	AG	AG	AG	AG	AG	AG	A

(

(