AG AG AG AG AG AG AG

Cod	e No: 137CY	R	16						
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD									
2000 ACC 1000 ACC	B. Tech IV Year I Semester Examinations, December GRAPH THEORY (Computer Science and Engineering) e: 3 Hours e: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questionsists of 5 Units. Answer any one full question from each unit	Max. Man	A. Part B						
AG	marks and may have a, b as sub questions.								
1.a) b) c) d) e) f) g) h) i)	Define cycle and circuit in graph. What is isomorphism and give example for isomorphic graphs? Define block and region in graph. What is connected graph and give two examples? Define Chordal graph Write Cayley's formula. What is independent set of graph? Describe matching in graphs. What is edge chromatic number of graph? Describe class-2 graphs.	AG	[2] [3] [2] [3] [2] [3] [2] [3] [2] [3]						
AG	AG AG ART-B AG	$\triangle \bigcirc$ (5	o Marks						
2.a) b)	Prove that number of vertices with odd degree in a graph is even Show that if there is walk (u,v) in graph G then there exists (u-v) OR		[5+5]						
△ (3.a)	3.a) Justify that "A connected graph is Euler if and only if it can be decomposed into circuits"								
4.	Explain Algorithm for shortest path problem from source vertexample. OR	ex to all vertices	s with an [10]						
5.	Explain max flow min cut theorem and illustrate with an example	e.	[10]						
△ 6. 7.	Describe Kruskal's algorithm and explain with an example. What is Hamilton graph and write its necessary conditions and path is a spanning tree.	also show that	[10] Hamilton [10]						
AG	AG AG AG AG	AG	AG						

AG AG AG AG AG AG AG

8. Explain procedure to find max independent set in graph and illustrate with example.[10] OR 9. Prove if G is k-regular bipartite graph with K>0 then G has a perfect/match. [10] Discuss about clique and give example. b) Prove that a graph with at least one edge is 2-chromatic if and only if it has no circuits of odd length. OR 11.a) Describe algorithm to find a proper edge coloring of a bipartite graph. Explain Brooks theorem. (4+6)									
AU		AU					<i>/</i>		
AG	AG	AG	AG	AG	AG	AG	A		
AG	ÅG	AG	AG	AG	AG	AG	A		
AG	AG	AG	AG	AG	AG	AG	A		
AG	AG	AG	AG	AG	AG	AG			
AG	AG	AG	AG	AG	AG	AG	_		