23 - T. 35.	R13	*
Code No	B.Tech II Year II Semester Examinations, May - 2016 HYDRAULICS AND HYRAULIC MACHINERY (Common to CE, CEE)	Yes, You
]	May Marks: 75	**************************************
	PART- A (25 Marks)	
	What is meant by most economical section in open channel flow? Explain chezy's and manning's formula for uniform flow. State Buckingham's pi theorem. Define Reynolds number. Weber number and Mach number. State the principle of Angular momentum. Explain Hydraulic efficiency, Mechanical efficiency and Overall efficiency. Explain about Draft tube theory in turbines. What is cavitation? Write the formula for cavitation in turbines. Write about classification of pumps. Define load factor and capacity factor.	A STATE OF THE STA
	PART-B (50 Marks)	
2.33	What is critical depth? With usual notations prove that in case of a rectangular Channel $y_e = (q^2/g)^{1/3}$. A 10 m wide rectangular channel carries a discharge of 20 m ³ /s with a depth of 2 m. Find the width to which the channel should be contracted to get critical flow at the contracted section. [5+5]	1000 mm
3.a) b) c)	What is a control section? Describe with sketches any two control sections. Give sketches with examples for the following types of GVF profiles in an open channel H_3 , M_2 , S_2 , S_3 , C_3 . A wide rectangular channel carries a discharge intensity of 4 m³/s per meter width. The longitudinal slope of the channel is 0.00005. Calculate the GVF width.	
* 3 3	profile produced by a studien drop in the $n = 0.03$. [3+3+4]	

In a 1 in 20 model of stilling basin, the height of the hydraulic jump in the model is observed to be 0.20 meter. What is the height of the hydraulic jump in the prototype? If the energy dissipated in the model is 1/10 kW, what is the

Write short notes on model and prototype.

corresponding value in prototype?

...

15+51

A Francis turbine runner having a diameter of 2.92 m. operates at 163.5 rpm, 8.a) under 54 m head, and develops 19900 kW at an efficiency of 87%. Find the other characteristics if this turbine is operated under 60 m head.

Savery

What are the characteristics curves of a hydraulic turbine? How are they useful to b) a practical engineer?

Design a pelton wheel which is required to develop 1500 kW, when working 9.a) under a head of 160 m at a speed of 420 rpm. The overall efficiency may be taken as 85% and assume other data required.

Explain the principle on which Kaplan turbine works with a neat sketch. [5+5] b)

With a neat sketch, explain the principle and working of a centrifugal pump. 10.a)

A centrifugal pump rotating at 1000 rpm delivers 160 liters/s of water against a head of 30 m. The pump is installed at a place where atmospheric pressure is 1×10⁵ P_a(abs.) and vapour pressure of water is 2 kP_a (abs.). The head loss in suction pipe is equivalent to 0.2 m of water. Calculate minimum NPSH, OR :

14 Discuss detail estimation of hydropower plant. What are the various applications of Hydroelectric power plant?

---00()00---