R13 Code No: 117EE JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, November/December - 2017 LINUX PROGRAMMING (Computer Science and Engineering) Max. Marks: 75 Time: 3 Hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. (25 Marks) [2] What are shell responsibilities? 1.a) [3] What are the applications of awk? b) [2] What are hard links? c) [3] Write about file locking? d) What are reliable signals? e) [3] Differentiate threads and processes. f) What is IPC? N.J.A. g) [3] Explain popen. h) [2] What are Berkeley sockets? i) [3] List the APIs for shared memory. i) (50 Marks) Explain associative arrays. 2.a) Write a shell script to find the factorial of a number. [5+5]b) Develop an AWK program to summarize from the list of all processes, a count of 3.a) processes run by every user (including root). Write about text processing utilities. b) Differentiate between the following terms: 4. b) stat() Vs fsat() a) getc() Vs fgetc() [10] d) scanf() Vs fscanf(). c) printf() Vs fprint() OR Explain the following system calls:

AG AG AG AG AG AG A

iv) link()

iii) read()

/ ii) seek()

Explain directory handling system calls:

i) open()

AG	b) Wri	ferentiate between fork ite the syntax of six vefer from each other.	() and vfork().		explain how the		A
AG	A min	ite a c program that ac mbers in a child process us and the parent shoul	s. The sum should	d be returned by	ments and then so child to the pare	ums the two ont as its exit	A
, , ,	8. Write a program and explain how to transfer a large amount of data between two processes using Message queues. OR						
AG	a). i b) F	plain the following cond Pipes between two proce Pipes among three proce	cepts about pipes: ess in a shell:	AG	AG	<u></u>	A
10. Explain with a program how to copy file data from server to client using shared memory. [10] OR							
AG	11.a) Ex i) so cor	plain briefly about the cocket() ii) bind() mpare various (PC mec		APIs with clear iv) accept()	syntax: v) connect(-)	<u> </u>	A
00O00							
AG	AC	3 AG	AG	AG	AG	AG	A
AG	AC	g AG	AG	AG	AG	AG	A
AG	AC	3 AG	AG	AG	AG	AG	A
AG	A	a AG	AG	AG	AG	AG	A