RIS

Code No: 113BN

()

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November - 2015 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Max. Marks: 75 Time: 3 Hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

Verify whether the following inference is valid or not. 1.a)

: If today is 2nd October then today is Gandhi's birthday. Statement 1

: Today is not 2nd October Statement 2

: Today is not Gandhi's birthday Inference

[2M]

Express $P \leftrightarrow Q$ in terms: b)

[3M]

i) Implication and AND ii) In terms of AND, OR, NOT

iii) In terms of EX-OR.

[2M]

Define group. c) Let $X = \{1, 2, 3, 4\}$ and a partition of X is given as $\{\{1,2\}, \{3,4\}\}$. Find the corresponding equivalence relation for given partition. [3M]

List the 3-combinations of {3a, 2b, 4c}

[2M]

e) Enumerate the number of binary numbers with seven 1's and five 0's. f)

[3M]

Find the general solution for the recurrence. g)

 $a_n = a_{n-1} + f(n)$, $n \ge 0$ and a_0 is given initial condition

[2M]

Find the co-efficient of X^9 in $(1+x^3+x^8)^{10}$. h)

[3M]

Find the cut vertices and cut edges in the following graph (figure 1). i)

[2M]

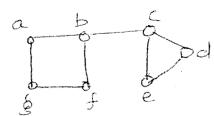


Figure: 1

How many regions will be there in a tree with 'n' vertices? Give explanation in j) [3M]one or two lines.

- 2.a) Obtain PCNF and PDNF by using truth table for the formula. $(P \rightarrow Q) \vee (Q \leftrightarrow R)$
 - b) Using automatic theorem proving, show that $(P \rightarrow Q)$, $\sim Q$ logically implies $\sim P$. [5+5]

OR

- 3.a) Show that $\sim (P \rightarrow Q) \rightarrow \sim (R \vee S)$, $((Q \rightarrow P) \vee \sim R)$, R logically implies $P \leftrightarrow Q$.
- b) Show that the set of following premises are inconsistent.

 Premise 1 : If today is 1st April then today is fool's day

 Premise 2 : If today is 1st April then 2+2≠8

 Premise 3 : If today is fool's day then 2+2 = 8

 Premise 4 : Today is 1st April.
- 4.a) Let $X = \{\text{ball, bed, dog, let, egg}\}$ and R is a relation defined on X as $R = \{(x, y) | x \text{ and y contains some common letter}\}$. Show that R is compatibility relation and also find maximum compatibility blocks for R.
 - b) Draw the Hasse diagram for the relation $R = \{(x, y) \mid x \text{ divides } y\}$ on $X = \{2, 3, 6, 12, 24, 36\}$.

5.a) Consider the following Hasse diagram shown in figure 2 for the relation "divides" and find the upper bounds and lower bounds for: i) { 2, 3} ii) { 3, 4, 6}.

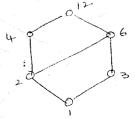


Figure: 2

- b) Verify the following system is group or not $G = \{1, 2, 3, 4, 5\}$ and the operation $+_6$. Where $+_6$ represents additive module 6. [5+5]
- 6.a) In how many ways can the letters of English alphabet be arranged so that there are exactly 6 letters between the letters b and c.
 - b) How many different outcomes are possible by tossing 15 similar coins? [5+5]

 OR
- 7.a) Enumerate the number of non-negative integral solutions to the in equality $X_1+X_2+...+X_5 \le 12$.
 - b) Find the co-efficient $X^5Y^5Z^{10}$ in the expansion $(2X+5Y-3Z)^{20}$. [5+5]
- 8. Solve the recurrence relation $a_n 5a_{n-1} + 8a_{n-2} 4a_{n-3} = 0$, where $n \ge 3$ and $a_0 = 1$, $a_1 = 1$, $a_2 = 2$. [10]

- 9.a) Solve the recurrence relation $a_n = a_{n-1} + 1/n$ (n+1) where $a_0 = 2$.
 - b) Write the generating function for the following sequence $B = \{b_r\}^{\alpha}_{r=0}$ where

[5+5]

$$b_r = \begin{cases} 1 \text{ if } & 0 \le r \le 4 \\ 2 \text{ if } & r = 5 \\ 0 \text{ if } & r \ge 6 \end{cases}$$

10. Consider the following Graph (Figure 3).

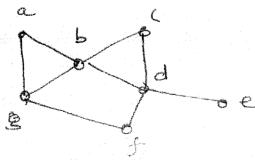


Figure: 3

With respect to the above graph decide whether the each of the following paths are simple, closed, circuit and cycle.

- a) a-b-c-d-b-g-a
- b) a-b-c-e-f

()

- c) g-b-d-f-g
- d) a-b-d-e
- e) a-b-d-e-d-b-a.

[2+2+2+2+2]

OR

11.a) Verify whether the following graph (Figure 4) contains Hamiltonian cycle or not.

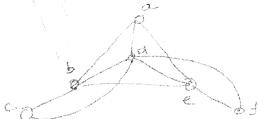


Figure: 4

b) Show that the complete graph K_n is planar if $n \le 5$.

[5+5]

