| | Code No: 123BN | R15 | | | | | | |---------------------------------------|--|--|--|--|--|--|--| | | JAWAHARIAL NEHRU TEGHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2016 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE | | | | | | | | • | (Common to CSE, IT) Time: 3 Hours Max | . Marks: 75 | | | | | | | U1 | Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part B consists of 5 Units. Answer any one full question f Each question carries 10 marks and may have a, b, c as sub questions. | rom each unit. | | | | | | | | PART - A 1.a) Give the truth table for the propositional formula | (25 Marks) | | | | | | | | (P ↔ ~Q) → (P ^Q) b) Write the sentence "It is not true that all roads lead to Rome" in the sy c) Define lattice. d) What is a monoid? e) How many words of three distinct letters can be formed from CAKE? f) Give the disjunctive rule for counting problem. g) What is the closed form expression of the sequence a_n = 9.5", n ≥ 0? | /mbolic form. [3]
[2] | reserve to the second s | | | | | | , , , , , , , , , , , , , , , , , , , | h) Find the coefficient of $x^2 \ln (1 + x^3 + x^8)^{10}$. i) What are the advantages of adjacency matrix representation? j) Define a spanning tree. | [3]
[2]
[3] | | | | | | | • | PART - B | (50 Marks) | . : | | | | | | | 2.a) Obtain the principal disjunctive normal form of the following formula by Verify whether the proposition $((P \lor \neg q) \to P) \leftrightarrow s \lor \neg (((P \lor \neg q) \to P)) \leftrightarrow s \lor \neg ((P \lor \neg q) \to P)$ | a $r \mapsto s y z^{-\frac{1}{2}} [5+5]$ | | | | | | | ,,,,,, | OR 3.a) Show that $(\forall x)(p(x) \land Q(x)) \rightleftharpoons (\not \forall x)(p(x) \land (\forall x)(Q(x)))$ is a logic b) Show the following using the automatic theorem i) $P \Rightarrow (\neg P \rightarrow Q)$ ii) $P \land Q \Rightarrow R$ | ally valid statement. | | | | | | | | 4.a) Show that the functions $f: R \to (1, \infty)$ and $g: (1, \infty) \to R$ define | d by $f(x) = 3^{2x} + 1$, | | | | | | | | $g(x) = \frac{1}{2}\log_3(x-1)$ are inverses. | | | | | | | | , , , , , | b). Prove that the transitive closure R of a relation R on a set A is the relation on A containing R. OR | ne smallest transitive | | | | | | | | 5.a) Let G is a group, $a \in G$. If $O(a)$ =n and m/n then prove that $O(a^m) = \frac{n}{m}$ | . . | | | | | | | | b) Let S is a semi group. If for all $x y \in s$, $x^2 y = yx^2$ prove that S is an all | belian group. | | | | | | ul ul ul of UT of UT LI L | | 6.a) How many ways are there to distribute 12 different books among 15 people if no peris to receive more than one book? | | | | | | | | |--|--|------------------------------------|--|--|--|----------------------------|-----|--| | | b) How | many different | outcomes are p | OR OR | ng 12 similar dice? | [5+5] | | | | | 7.a) Find to | the mid-term of | $\int_{0}^{\infty} \left(2x - \frac{1}{3x}\right)^{10} dx$ contains x^{11} and | l y⁴ in the expans | ion of $(2x^{\frac{3}{2}} + \frac{2}{3}xy^2 + \frac{1}{3}xy^2 \frac{1}{$ | z²)* ^{[. [} [5+5] | | | | | | | | for n ≥ 0 Where | | | | | | | | $a_{n-1} + 3n^2 + 3n +$ | - Where $a_{ij}^2 = 1$ | on by substitution | 1 | [5+5] | | | | | 9.a) Solve | the recurrence | relation a2 - s | | orn ≤ 0 , given $a_0 = a$ | Tre- | | | | ; ; ;; · | a _n - 7 | $a_{n-1} + 1.6a_{n-2} - 1$ | $2a_{n-3}=0, n\geq 3$ | | | [5+5] | **; | | | | that a | lieast 5 vertices | have degree 6 | rder 9 such that e
or atleast 6 vertice | ach vertex has degres have degree 5. | e 5 or 6. Prove | | | | | i) K _n | mine the number ii) K _m | | <u>4</u> _ | | [5+5] | | | | | 1 ka) Using With e | depth first sea
as the root of | rch method, de
Γ. | OR
termine the spani | ning tree Tifor the | following graph | | | | | | | a
d | b c
e f g | | | | | | | | | h | i j m | | | | | | | b) Give a | ın example grap | oh which is Han | niltonian but not I | Eulerian. | [5+5] | | | | | | | | -00 O 00 | | | | | | | | | | | | | | | | 10 John 19 Joh | ar ar ar ar ar