JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November - 2015 MATHEMATICS – II

(Common to CE, CHEM, MMT, AE, PTE, CEE)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)

- 1.a) If ϕ satisfies Laplacian equation, show that $\Delta \phi$ is both solenoidal. [2M]
 - b) Find curl $x^2i + yi + zk$.

[3M]

- c) Write the Dirichlet's conditions for the existence of Fourier series of a function f(x) in the interval $(\alpha, \alpha + 2\pi)$.
- d) State and prove linearity property of Fourier transforms.

[3M]

e) State interpolation.

i)

[2M]

f) If the interval of difference is unity, Find $\Delta(x^2 + 2x)$.

- [3M]
- g) Under what conditions Gauss-Seidal method is applicable.
- [2M]
- h) Derive an iteration formula to find square root of a number n by Newton Raphson method. [3M]
- i) State merits and demerits of Runge-Kutta method.

[2M]

X	0	1	2	3
у	1	0.5	0.3333	0.25
	-			

Evaluate $\int_{0}^{3} \frac{dx}{1+x}$ by Trapezoidal rule.

[3M]

PART-P

(50 Marks)

- State and verify Stokes theorem for the function $\overline{f} = x^2i + xyj$ integrated round the square in the plane z = 0 whose sides are along the lines x = 0 = y, x = a = y. [10]
- 3. Find the work done in moving in a particle in the force field $\overline{f} = 3x^2i + (2zx y)j + zk$, along the curve defined by $x^2 = 4y, 3x^3 = 8z$ from x = 0 to x = 2.
- 4.a) Expand the Fourier series expansion of the function

$$f(x)=0, -\pi \le x \le 0$$

$$=\sin x$$
, $0 \le x \le \pi$

and deduce
$$\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{\pi - 2}{4}$$
.

b) Obtain the half range cosine series for the function $f(x) = x^2$ when $0 < x < \pi$ and find the sum of the series $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$ [5+5]

- 5.a) State and prove Change of scale property of Fourier transforms.
 - b) Find Fourier sine transform of $f(x) = \frac{1}{x(x^2 + a^2)}$ and hence deduce cosine transform of $\frac{1}{x^2 + a^2}$. [5+5]
- 6.a) Find the missing term in the following data:

X	0	1	2	3	4
у	1	3	9	-	81

Why this value is not equal to 3^3 . Explain.

b) Fit a straight line to the following data by the method of least square. [5+5]

| x | 0 | 1 | 2 | 3 | 4 |
| y | 1 | 1.8 | 3.3 | 4.5 | 6.5 |

OR

- 7.a) Given $\sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$ and $\sin 60^{\circ} = 0.8660$. Find $\sin 52^{\circ}$ using Newton's interpolation formula.
- b) A curve passes through the points (0, 18), (1, 10), (3, -18) and (6, 90). Find the slope of the curve at x = 2.
- 8. Find the inverse of the matrix $\begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ using LU decomposition method. [10]

OR

- 9.a) Find the root of $2x \log x = 7$, correct to three places of decimal using iteration method.
 - b) Find the root of the equation $x\log_{10}(x) = 1.2$ using False position method. [5+5]
- 10. Find the successive approximate solution of the differential equation y' = y, y(0) = 1 by Picard's method and compare it with exact solution. [10]

OR

Determine the largest Eigen value and the corresponding eigenvector of the matrix $\begin{bmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 1 & 4 \end{bmatrix}$ to 3 correct decimal places using the power method. [10]

---00O0o---