Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

> PART- A
1.a) Find $\nabla x^{2} y z^{3}$.
b) State Stoke's theorem .
e) If $\mathrm{f}(\mathrm{x})=\mathrm{x}_{\mathrm{t}}+\mathrm{x}^{2}$ in $(-\pi, \pi)$ then find a_{0} in the fourier series of $\mathrm{f}(\mathrm{x})$.
d) If the Fourier transform of $\mathrm{f}(\mathrm{t})=\frac{2 \sin a s}{s}$, then find $\mathrm{F}[\mathrm{tf}(\mathrm{t})]$.
e) If $\mathrm{h}=1$, find $\Delta^{2}\left(x^{3}-3 x^{2}\right)$.
f) Write the three normal equations to fit $y=a+b x+c x^{2}$.
g) ... Find the two points between which the root of $x \log _{10} x=1.2$ lies
h) Find the LU decomposition of $\mathrm{A}=\left[\begin{array}{ll}1 & 5 \\ 2 & 3\end{array}\right]$.
i) If $\frac{d y}{d x}=1+x y$ and $y(0)=1$ then find $y^{(1)}(x)$ by Picard' methods.
j) ... If $y^{\prime \prime}+y=2$, then find the recurrence relation connecting $y_{i}, y_{i-1}^{\prime}, y_{i+1}$

> PART - B
(50 Marks)
2. Verify Greens theorem for $\int_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where c in bounded by $y=x$ and $y=x^{2}$.

OR

3. Verify stokes theorem for $F=\left(x^{2}+y^{2}\right) i-2 x y i$ taken around the rectangle bounded by the lines $x= \pm a, y=0, y=b$.
4.a) Find the Fourier series of the periodic function as defined by

$$
f(x)=\left\{\begin{array}{c}
-\pi \text { in }-\pi<x<0 \\
x \text { in } 0<x<\pi
\end{array}\right.
$$

b) : Obtain the Fourier cosine transform of
5.a) Obtain the Fourier series to represent $f(x)=\frac{1}{4}(\pi-x)^{2}, 0<x<2 \pi$
b) Find the fourier transform of $f_{i}(x)=\left\{\begin{array}{cc}1-|x|, & \text { if }|x|<1 \\ 0 & \text { if } \\ 0 \ldots & \ldots\end{array}\right.$
6. Fit a natural cubic spline to the following data. Hence determine $y(0.5)$ and $y(1.5)$.

7.a) Find $y(15)$, given that $y(5)=12, y(6)=13, y(9)=14, y(11)=16$ by Lagrange's interpolation formula.
b) Fit the curve $y=a+b x$.
-...

x	0	1	2	3	4.
y	1	1.8	3.3	4.5	6.3

8. Solve the following equations by Gauss seidel method.

$$
6 x+y+2 z=3, \quad x+8 y+z=8, \quad 2 x+4 y+9 z=9
$$

9:a) Find a reat root of the equation $3 x-1=\cos x$ by iterative method.
b) Give the geometric interpretation of Regula Falsi method.
10. Find $\mathrm{y}(0.2)$ using Taylor's series given that $\frac{d y}{d x}=x y^{2}+1$ and $\mathrm{y}(0)=1$, taking $\mathrm{h}=0.2$.

OR

11. Find the values of $y\left(\frac{\pi}{8}\right), y\left(\frac{\pi}{4}\right)$ and $y\left(\frac{3 \pi}{8}\right)$ by finite difference method, given that $y^{\prime \prime}+y=2 ;, y(0)=0, y\left(\frac{\pi}{2}\right)=0$.
