

AG,	de No: 133BD JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HY B.Tech II Year I Semester Examinations, November/December MATHEMATICS – IX Common to GE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE, MIE, PTHE: 3 Hours Max.	r - 2017	A /~	<i>F</i>
Not	Part A is compulsory which carries 25 marks. Answer all questions in 1 Part B consists of 5 Units. Answer any one full question from Each question carries 10 marks and may have a, b, c as sub questions. PART A	om each u	nit. A G Marks)	_
1.a) b)	Show that $f(z) = z + \overline{z}$ is not analytic any where in the complex plane. Write Cauchy-Remainn equations in Polar form.		[2] [3]	
(c) (d) (e) (f)	Find the residues at the poles of the function $f(z) = \frac{1}{(z+1)(z+2)}$. Expand $f(z) = Tanz$ in Taylor's series about the point $z=0$. Define Bilinear transformation. Define for a complex function: i) Isolated Singularity ii) Removable Singularity	Ingularity.	[2] [3] [2] [2] [3]	4
(g) (h) (i) (j)	If $f(x) = x^2$ in $[-\pi, \pi]$, find a_0 in Fourier series. State Fourier integral theorem. Write the one dimensional Heat equation in steady state. Classify partial differential equation $\frac{\partial^2 z}{\partial x^2} = 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.		2] 3] 2] 3)	4
	PART-B	(50N	Iarks)	
2.a)	Determine p so that the function $f(z) = \frac{1}{2}\log(x^2 + y^2) + Tan^{-1}(\frac{px}{y})$ is	•	tarks)	
△ (b) 3.a)	Find the analytic function $f(z) = u + iv$ if $u - v = e^{x} \left[\cos y - \sin y\right]$. Determine the analytical function whose real part is $x^3 - 3xy^2 + 3x^2$ find the harmonic conjugate of this real part.			<u> </u>
b)	Prove that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] f(z) ^2 = 4 f'(z) ^2$.	. [:	5+5]	
4.a) b)	Using Cauchy integral formula, find $\int_C \frac{e^{2z}}{(z+1)^3} dz$, where C is the curve Evaluate $\int (x^2 - iy^2) dz$ along a straight line from $(0,0)$ to $(0,1)$ and if $(2,1)$.	z = 2. hen from (0)	(1) to (1) to (1)	Δ
5.	Find Laurent's series of $\frac{z}{(z-1)(z-2)}$ about:			
AG.	a) $ z < 1$ b) $ z > 1$ c) $1 < z < 2$	ı) () ()		A

AG AG AG AG AG AG A

