R13

Code No: 113AQ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December-2014 METALLURGY AND MATERIALS SCIENCE (Common to ME, MCT, AME)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	Part- A	(25 Marks)
1.a)	Define grain boundaries, unit cell, and space lattice.	[2M]
b)	Define intermediate alloy and electron compound.	[3M]
c)	Define liquidus line and solidus line.	[2M]
d)	Define crystalline and non-crystalline materials.	[3M]
e)	Define ledburite, pearlite and austenite.	[2M]
f)	Why is heat treatment of steels done?	[3M]
g)	Give two advantages of steels over the family of cast irons.	[2M]
h)	Give composition properties and uses of muntz metal.	[3M]
i)	Write the classification of polymers and define them.	[2M]
j)	Give a few important applications of ceramics.	[3M]
	Part-B	(50 Marks)

- 2.a) Explain in brief about Hume-Rothery rules.
 - b) Find the miller indices of a plane that makes an intercept of one on the x -axis and two on the y- axis and is parallel to the z- axis.
 - c) Calculate the critical radius ratio for tetrahedral and octahedral around a central cation in a crystal.

OR

- 3.a) Distinguish between atomic sites and lattice points in a monoatomic crystal and a NaCl crystal.
 - b) Write the necessity of alloying.
 - c) Determine the three methods of grain size measurements.
- 4. From the data given below for Bi-Cd system plot the equilibrium diagram to scale and find:
 - a) Amount of eutectic in 20% Cd alloy,
 - b)Free Cd in 70% Cd alloy

Given Melting temperature of Bi is 271 °c

Melting temperature of Cd is 321 °c

Eutectic temperature 144 °c

Eutectic composition 39% Cd

c) What are the effects of non equilibrium cooling?

OF

- 5.a) What is coring? Which alloys show cored structures and under what conditions?
 - b) Draw a typical eutectic type diagram and explain its important features.
 - c) What is a dendrite? Explain the mechanism of formation of dendrites.

- 6.a) Write the classifications and applications of steels.
 - b) Explain the austenite to pearlitic transformation in detail.
 - c) What is the purpose of Normalizing and Hardening?

OR

- 7.a) Define hardenability and explain the Jominey end quench test.
 - b) What is the purpose and process of Tempering for steels?
 - c) What are the effects of retained austenite?
- 8.a) How are cast irons classified? Write the characteristics of cast irons as compared to steels.
 - b) What are the important alloys of copper and write their applications?
 - c) Define season cracking of brasses.

OR

- 9.a) Write the properties of alpha and alpha-beta titanium alloys.
 - b) Write the applications and properties of aluminum bronze alloys.
 - c) Write the properties of titanium and explain why two-phase titanium alloys are stronger than single phase alpha alloys.
- 10.a) Explain polymerization with an example.
 - b) What are the factors effecting the properties of polymers?
 - c) Write the properties of carbon reinforced composites.

OF

- 11.a) Write about Polymer Matrix Composites.
 - b) Differentiate between matrix and fibers.
 - c) Differentiate between ceramics and composites.

---00000---