AG AG AG AG AG AG AG A

Coc	de No: 128DV R15	
200	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD	
A .	B. Tech IV Year II Semester Examinations, May - 2019	Α
A(j	PRESTRESSED CONCRETE STRUCTURES (Civil Engineering)	
Tim	ne: 3 hours Max. Marks: 75	/
Not	te: This question paper contains two parts A and B.	
1100	Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B	
	consists of 5 Units. Answer any one full question from each unit. Each question carries	
$\triangle \cap \mathbb{C}$	10 marks and may have a, b, c as sub questions.	Λ
Use	of Relevant IS codes is permitted.	
	PART - A	
	(25 Marks)	
1.a)	What are the limitations of prestressed concrete? [2]	
(b)	Explain the necessity of high strength steel in the prestressed concrete construction.[3]	Λ
$A \subset C$	List out the percentage of loss of prestress in prestressed concrete members. [2] (Explain the Wobble effect: [3]	<u> </u>
e)	State the assumptions made in the analysis of PSC flexural members. [2]	,
f)	Explain the factors affecting the shear strength of a PSC flexural member. [3]	
g) h)	Define transmission length. [2] Explain the importance of Anchorage zone reinforcement. [3]	
i)	What is the effect of differential shrinkage on the behavior of composite prestressed	
ΔG_{\bullet}	concrete members? [2]\ Explain the various factors influencing deflections of PSC beams. [3]	
/ \\	Explain the various factors influencing deflections of PSC beams. [3]	/
PART - B		
2.a)	Explain the general principles of prestressing. (50 Marks)	
b)	Explain the Freyssinet system of prestressing. [4+6]	
$A \cap A$		$^{-1}$ \wedge
$\begin{pmatrix} 3 \\ b \end{pmatrix}$	Explain the classification of prestressing. Explain the various systems of prestressing. [4+6]	/×
-,		
4.	A pre-tensioned beam 230 mm \times 300 mm is prestressed by 12 wires of 7 mm diameter initially stressed to 1200 N/mm ² with their centroid located 50 mm from the sofit.	
	Determine the percentage loss of stress due to elastic deformation, creep, shrinkage and	
A /^	relaxation. Use the following data: Relaxation of steel stress is 125 N/mm ² , creep	٨
A(z)	coefficient is 1.6 and residual shrinkage strain is 3 × 10 ⁴ .	A
5.	A simply supported post-tensioned concrete beam of span 12 m has a section of	/
	250 mm × 500 mm is subjected to an initial prestressing force of 500 kN applied by	
	parabolic tendons of 450 mm ² with zero eccentricity at the supports and 150 mm at midspan. Find the total loss of prestress in the tendons using the following data: M40 grade of	
	span. Find the total loss of prestress in the tendons using the following data: M40 grade of concrete, $E_S = 2 \times 10^5 \text{ N/mm}^2$, anchorage slip = 5 mm, creep coefficient of concrete = 1,	
	shrinkage of concrete = 0.0002 and relaxation of steel = 2%.	\wedge
	DA DA VA VA VA	/^

6. Design a rectangular pre-tensioned concrete beam of span 6 m subjected to working loads of 25 kN each at the one-third span points. The permissible stresses in tension are zero at transfer and 1.5 N/mm² under working loads. The permissible tensile stress in the prestressing wires is 1500 N/mm². Assume the loss of prestress is 15%. A beam of unsymmetrical I-section, top flange 300 mm wide and 75 mm thick; bottom

A beam of unsymmetrical I-section, top flange 300 mm wide and 75 mm thick; bottom flange 200 mm wide and 75 mm thick; the thickness of the web is 60 mm; the total depth of the beam is 400 mm. The beam is subjected to a uniformly distributed live load of 25 kN/m. Determine the stresses at the mid-span section if the effective prestressing force is 600 kN located at 50 mm from the soffit of the beam. [10]

A prestressing force of 500 kN is to be transmitted through a distribution plate 150 mm × 150 mm, the centre of which is located at 125 mm from the bottom of an end block of section 150 mm × 400 mm. Determine the position and magnitude of maximum tensile stress on a horizontal section passing through the centre of the distribution plate.

OR

The end block of a post-tensioned concrete member is of size 450 mm × 450 mm. Four cables, each made up of 8 wires of 10 mm diameter strands and carrying a force 1500 kN are anchored by plate anchorages, 200 mm × 200 mm, located with their centres at 150 mm from the edges of the end block. Design suitable anchorages for end block. Assume the grade of concrete is M 45, the strength of concrete at transfer is 25 N/mm² and the yield strength of anchorage reinforcement is 500 N/mm². [10]

Determine the flexural strength of a composite T-beam section consists of a pre-tensioned rectangular beam 150 mm × 300/mm, with a cast in-situ slab 450 mm wide and 75 mm deep laid over the beam. The beam contains 12 wires of 5 mm diameter located 50 mm from the soffit. The tensile strength of steel is 1600 N/mm² and the strength of concrete in the slab is 30 N/mm².

(

11. Calculate the short-term and long-term deflections of a simply supported prestressed concrete beam of rectangular cross-section 300 mm × 500 mm and span 16 m is prestressed by a parabolic cable with an eccentricity of 150 mm above the neutral axis at the supports and 150 mm below the neutral axis at the mid-span. The prestressing force in the steel cable is 1000 kN with an initial stress of 1250 N/mm². The beam is subjected to uniformly distributed load of 25 kN/m in addition to a concentrated load of 100 kN at its mid-span. Adopt M40 grade of concrete, loss of prestress is 20% and creep coefficient is 2. [10]

OR

AG AG AG AG AG AG AG

AG AG AG AG AG AG A