Code No: 126WY JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, April - 2018 STEEL STRUCTURES DESIGN AND DRAWING (Common to CEE, CE) Max. Marks: 75 Time: 3 hours **Note:** This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. Use of IS: 800-2007 code, steel table and extracts from code is permitted. PART - A (25 Marks) [2] Enumerate the different limit states as per code. 1.a) List the failure modes that may control the strength of a bolted joint [3] b) List the checks to be made before, during and after welding to maintain quality control. [2] [3] Distinguish between lacing and battening. d) [2] List the defects in weld. e) [3] Write down the assumptions involved in the design of purlins. f) Generally purlins are placed at the panel points. Why? [2] g) List the forces acting on the web splice of a plate girder, [3] h) [2] Explain briefly about failure of bolted joints. i) Explain under what circumstances intermediate vertical stiffners and end bearing [3] stiffners need to be provided in plate girder. PART - B (50 Marks) What are the various types of structural steel? Discuss their mechanical properties. Sketch the various types of Bolted connections and Welded connections. A bridge truss diagonal carries a pull of 200 kN. The length of the diagonal is 3 m. The 3. member is connected to a gusset plate 10 mm thick. Design a suitable section using. a) Single angle section. [5+5]b) Double angle section....

Design a column having an effective length of 6 m and subjected to a factored axial load of 2400 kN. Provide the channels back-to-back connected by welded lacing.

Assume Fe410 grade steel.

OR

5. A column ISHB350@661.2 N/m carries an axial compressive factored load of 1700 kN. Design a suitable welded gusset base. Assume M20 grade concrete. [10]

AG	AG	AG	AG	AG	AG	AG	A
6.	distributed loa	oly supported plan ad of 20 kN/m indication flange of the	clusive of self we beam is laterally	eight. Effective sp	rry a uniformly oan of the beam i	s 3 m. [10]	
AG.	Design a purl Spacing b/n to Span of truss Self Wt. of pu Wind Load	: 1 urlin : 1	om. Spacing b. Om. Self Wt. o	/n purlin	1.2 m : 171 N : 0.4 kN		A
8. △ ○	member is co	s diagonal carries nnected to a guss le section. b) Dou	et plate 10 mm tl	nick./Design a su	itable section usi	m. The	A
9.	Design a splic	ce for joining tensibjected to a fact 20mm diameter	sion member sectored tensile load	tions 160 × 10mr d for 360 kN. A	n and 320 × 16m ssume Fe 410 g	m. The rade of [10]	
<u></u>	Design intermediate transverse stiffeners and connections without using tension field action for the welded plate girder section as follows; Web plate = 3000 mm × 8 mm; Flange plates = 500 mm × 20 mm, Factored bending moment and shear force are 4500 kN-m and 900 kN respectively. [10]						
11.	50 kN/m. Do stiffeners. As	eel bridge girder esign a welded sume depth to th	of span 18 m of thin web plate ickness ratio of	girder with no web as 150. Tak	intermediate tra e yield stress of	nsverse steel as	Λ
AG .	250 N/mm².	AG	00000	AG	AG	#U	/-
	A	A -	A .~	A ^	A 73	A /	Λ
AG	AĠ	AG	AG	AG	AG	AG	
A /	A	A / _	\ <u> </u>	A (^	A (^	A (^	Λ
AU	AU	AG					Jumin
Λ <u></u>	A (^	AG					Δ
	/ \						/ '

(