

AG	AG AG AG AG AG AG AG AG	Δ
Code	No: 153BU	
	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD	
	B. Tech II Year I Semester Examinations, December - 2019	
	STRENGTH OF MATERIALS – I	
1929	(Civil Engineering)	A
Time	: 3 Hours AGAGAGAMax. Marks: 75	<u> </u>
Note:	This question paper contains two parts A and B.	
	Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B	
	consists of 5 Units. Answer any one full question from each unit. Each question carries	
	10 marks and may have a, b as sub questions.	
	To marks and may have a, b as sub questions.	
AG	AG AG PART-A AG AG(25 Marks)	<u> </u>
1.a)	Define Poisson's ratio.	
b)	Define Point of Contraflexure. [2]	
c)	Draw the shear stress distribution across a triangular section 'Base =B and Height = H'	
	and indicate the location of maximum shear stress if the section is subjected to flexural	
	shear force 'F'. [2]	
∧	What is a conjugate beam?	Λ
// / * * *	Define principal stresses.	/
$A \left(\begin{array}{c} -e \end{array} \right)$	Explain the different types of stresses and strains.	
,	Explain the different types of stresses and strains. Derive the relationship between shear force and bending moment. [3]	
g)	Derive the relationship octween shear force and sending members	
h)	Explain the assumptions made in the theory of sample	
i)	State Mohr's theorems. [3]	
j)	Draw the Mohr's Circle of stress if an element is subjected to only shear stress of	
37	10 MPa.	A
AG I		<u>/_</u> }
2.a)	Derive the relation between the various elastic constants.	
b)	A stepped bar is subjected to axial forces as shown in Figure 1. Determine the safe value	
	of 'P', if normal stresses in steel, brass and copper are limited to 180 MPa, 100 MPa and	
	120 MPa respectively. Also find the corresponding elongation of the bar. [4+6]	
	Poment	
AG		<u> </u>
1	1.5 m 1.0 m 1.0 m	
	Figure: 1	
	OR	
3.a)	Derive an expression for the strain energy stored in a bar (L, A and E) subjected to an	Α
A / \(\frac{3.a}{1}\)	axial/force 'P'. \wedge	/ \
A 1 7 12 1	A composite bar consists of a steel rod 1.8 m long and 25 mm diameter encased in a	/
/ \ \ \ O)	copper tube of 25 mm internal diameter and 32 mm external diameter. A weight of 10 kN	
	copper tube of 25 min internal diameter and 52 min external diameter. It weight of the composite	
	is dropped from a height of 1.0 m on to a collar fixed at the bottom end of the composite	
	bar. Calculate the maximum instantaneous stresses induced in the two components.	*****
	Assume $E = 200 \text{ GN/m}^2$ for steel and 100 GN/m^2 for copper. [5+5]	
		Ä
AG	AG AG AG AG AG	<u>/</u> ^

1)

