	Code No: 123AB		R15	·
Ë	JAWAHARLAL NEHRU TECHNOLOGICAL UNIV B.Tech II Year I Semester Examinations, Novembrush THERMODYNAMICS (Common to ME, AE, AME, MSN	oer/December	DERA <u>B</u> AD - 2016:	F) É
	Time: 3 Hours	•	x. Marks: 75	
5	Note:This question paper contains two parts A and B Part A is compulsory which carries 25 marks: Answer all Part B consists of 5 Units. Answer any one full Each question carries 10 marks and may have a, b, c as so	question from	art A	PE
	PART- A		,	
E.	1.a) Explain the process of irreversibility. b) What is the principle of Thermometry? c) Define two statements of second law of thermodynamics. d) Mention all Maxwell relations.	P6	(25 Marks) [2] [3] [2] [3]	PE
6	e) Explain the non flow process. f): "Write the Clausius Clapeyrom equation and its significance" what is meant by molecular internal energy? "" h) Write the Carrier's equation and its significance. i) Draw p-v and T-s diagrams of Lenoir cycle. j) Draw the Bell Coleman cycle in operation.	ce. Fig.	[2] [2] [3] [3] [2] [3]	F'E
- i	PART-B		(50 Marks)	
	2.a) What is meant by thermodynamic equilibrium? Explain wb) What is meant by SFEE and derive it and reduce it for the OR	with the help of e turbine.	examples. [5+5]	
E	 3.a)Write about constant volume gas Thermometer? Why pressure gas Thermometer	power of 15 k respectively. F	w. The inlet and ind the exit air	PE
6	4.a) Discuss the significance of Third law of thermodynamics. b) A heat pump working on a reversed Carnot cycle tal maintained at 3°C and delivers it to another reservoir wheat pump drives power for its operation from a reversi higher and lower temperature limits of 1077°C and 7′ supplied to the reservoir at 77°C, estimate the energy	ces in energy where temperated ble engine ope 7°C. For 100	ure is 77 ⁰ C. The rating within the kJ/sec of energy	PE
:;	1077°C.		[5+5]	
	5.a) Explain the concept of irreversibility and its significance. b) 0.5 kg of air executes a Carnot power cycle having a ther transfer to the air during isothermal expansion is 40 isothermal expansion the pressure is 7 bar and the volume.	mal efficiency of kJ. At the b	beginning of the	· ···
:	in maximum and iminimum temperatures for the cycle in K isothermal expansion in m ³ and the work, heat transfer f kJ. c _n =1.008 kJ/kgK and c _v =0.721 kJ/kgK for air.	Celvin; the volu	me at the end of	

,	•	na by triple poin	it? Give the pres	sure and Temper	rature of water at	
b) : Water 300°C	c per hour. At a s	section downstrea water spray in kg	am where the pre /hr.	arrying 5 tonnes essure is 3 bar, th	of steam at 5 bar, be quality is to be [5+5]	
7.a) Write	about Vander W	aals equation for	OR real gases.			
b) Expla	in the steps invo		struction of Psyc	hrometric chart	at 2 bar pressure [5+5]	74.2
b) A slir Find t	ng psychrometer the humidity ration	reads 40 ⁰ C dry b o, Relative humi	oulb Temperature dity, dew point T	Temperature, spe-	ulb Temperature. cific volume, and	
entna	lpy of air		OR E		[5+5]	F-1
	is an adiabatic sa				ual the saturation	
b) At ste stream kineti and o	n of oxygen (O ₂) c an <u>pötent</u> ial en xygen in kg/mir	at 127 ⁰ C and 1 ergy effects are r	bar to form a mix negligible: Detern of fraction of de	xed stream at 47 ^t mine (i): Mass flo ry air and oxyge	abatically with a C and 1 bar. The w rates of dry air in the existing [5+5]	Pí
10.a) Write	about Dual com	bustion cycles an	nd the significance	ce of the same.	100 K and 288 K.	
i) The pr i) The ii) Th	essure at the beg compressor and e cycle efficienc	inning of isother turbine werk pe y.	mal compression r kg of air; and OR	is 1.413;5ar. De	termi ne: ; [5+5]	E'E
iii) The ii) The ii) The ii) The iii) The iii) The iii) An e iii comp	essure at the beg compressor and e cycle efficiency is a reversed Car ngine working of ression ratio is 8 erature of the cy	inning of isother turbine work per y. not cycle used fo on the Otto cyc . Heat supplied is	mal compression kg of air, and OR or refrigeration? It is supplied to a supplied to a supplied to a supplied which is a supplied and the n	is 1.413; bar. De Explain the proce with air at 0.1	[5+5] sses. MPa, 35°C. The num pressure and	
iii) The ii) The ii) The ii) The iii) The iii) The iii) An e iii comp	essure at the beg compressor and e cycle efficiency is a reversed Car ngine working of ression ratio is 8 erature of the cy	inning of isother, turbine work person to cycle used for the Otto cycle is the cycle efficient the cycle efficient and R =	mal compression kg of air, and OR or refrigeration? It is supplied to a supplied to a supplied to a supplied which is a supplied and the n	is 1.413; bar. De Explain the proce with air at 0.1 Iculate the maxin	[5+5] sses. MPa, 35°C. The num pressure and essure.	
iii) The ii) The ii) The ii) The iii) The iii) The iii) An e iii comp	essure at the beg compressor and e cycle efficiency is a reversed Car ngine working of ression ratio is 8 erature of the cy	inning of isother, turbine work person to cycle used for the Otto cycle is the cycle efficient the cycle efficient and R =	mal compression kg of air, and OR or refrigeration? It is supplied to see the second to the new part of the n	is 1.413; bar. De Explain the proce with air at 0.1 Iculate the maxin	[5+5] sses. MPa, 35°C. The num pressure and essure.	
ii) The ii) The ii) The ii) The ii) The iii) The iii) The iii) An e iii comp Temp For ai	essure at the beg compressor and e cycle efficiency is a reversed Car ngine working or ression ratio is 8 erature of the cyc. r. C _p = 1.005, c _v	inning of isother turbine work persy. not cycle used for the Otto cycle. Heat supplied is cle, the cycle effit = 0.718, and R =	mal compression kg of air, and OR or refrigeration? It is supplied to see 100 kJ/kg. Calciency and the new 10.287 kJ/kgK.	is 1.413; bar. De Explain the proce with air at 0.1 Iculate the maxin	[5+5] sses. MPa, 35°C. The num pressure and essure. [5+5]	
iii the pri ii) The ii) The ii) The iii) The lib iii) An e iii comp	essure at the beg compressor and e cycle efficiency is a reversed Car ngine working or ression ratio is 8 erature of the cyc. r. C _p = 1.005, c _v	inning of isother turbine work persy. not cycle used for the Otto cycle. Heat supplied is cle, the cycle effit = 0.718, and R =	mal compression kg of air, and OR or refrigeration? It is supplied to see the second the new and the new 20287 kJ/kgK.	Explain the proce with air at 0.1 lculate the maximean effective pro	[5+5] sses. MPa, 35°C. The num pressure and essure. [5+5]	
ii) The ii) The ii) The ii) The ii) The iii) The iii) The iii) An e iii comp Temp For ai	essure at the beg compressor and e cycle efficiency is a reversed Car ngine working or ression ratio is 8 erature of the cyc. r. C _p = 1.005, c _v	inning of isother turbine work persy. not cycle used for the Otto cycle. Heat supplied is cle, the cycle effit = 0.718, and R =	mal compression kg of air, and OR or refrigeration? It is supplied to see the second the new and the new 20287 kJ/kgK.	Explain the proce with air at 0.1 lculate the maximean effective pro	[5+5] sses. MPa, 35°C. The num pressure and essure. [5+5]	
ii) The ii) The ii) The ii) The ii) The iii) The iii) The iii) An e iii comp Temp For ai	essure at the beg compressor and e cycle efficiency is a reversed Car ngine working of ression ratio is 8 erature of the cycle. Cp = 1.005, cv	inning of isother turbine work persy. not cycle used for the Otto cycle. Heat supplied is cle, the cycle effit = 0.718, and R =	mal compression kg of air, and OR or refrigeration? It is supplied to supplied the supplied of air, and the new coolers and the new coolers. OOoo	Explain the proce with air at 0.1 lculate the maximean effective pro	[5+5] sses. MPa, 35°C. The num pressure and essure. [5+5]	