AG AG AG AG AG AG A

				/
C	ode No: 115AK		213	
	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSIT	Y HYDERABA	AD	
AG	B. Tech III Year I Semester Examinations, May - ANALOG COMMUNICATIONS (Electronics and Communication Engineering)	2018 Max. Ma	rks: 75	/
No	te: This question paper contains two parts A and B.			
	Part A is compulsory which carries 25 marks. Answer all questionsists of 5 Units. Answer any one full question from each unit	stions in Part A.	Part B	
$\Lambda \sim$	IV marks and may have as by class subjuggestions		carries	
	PART A	A(J	A(j)	A
		(25]	Marks)	•
1.a) What is ring modulator?		[2]	
b c	Describe COSTAS loop.		[2] [3]	
$\triangle \bigcirc d$	Describe applications of different AM systems.		[2]	,
/ \ e) f)	Describe zero crossing detectors. Compare FM and AM.		[2]	1
g)	What is pre – emphasis?		[3] [2]	
h) i)	What is de – emphasis? Draw the diagram. What is time division multiplexing?		[3]	
j	Explain generation of PPM.		[2] [3]	
A(j				/
V. Samer's		(50 M	(arks)	
2.a)				
b)	A distorted form of a sinusoidal wave cos ³ oct is available. To ob	tain DSB – SC	signal,	
A />	a modulating signal f(t) is multiplied by this distorted carrier sketch of the product f(t) cos³ωct. How can the desired modulated	waveform. Fin d signal f(t) cos	dand on the	,
	obtained from this product?	AG	[446]	/_
3.a)	Explain the envelope detector.		y 3 50001	*
b)	Consider an AM signal ϕ_{am} (t) = (1+ Acos $\omega_m t$) cos $\omega_c t$, wher frequency $\omega_m = 5$ KHz and the carrier frequency, $\omega_c = 100$ KHz.	The constant A	signal	
	can this signal be demodulated by an envelope detector? What	will be the out	nut of	
	the envelope detector? Find the frequency spectrum of the enve	elope detector o	utput.	Λ
4.	AG AG AG			/
••	Single – sideband modulation (SSBM) may be viewed as a hybrid Evaluate the envelope and instantaneous frequency of an SSB was	form of AM and ave for the follow	d FM. Owing	
	two cases: a) When only the upper sideband is transmitted.			
۸ 🗢	b) When only the lower sideband is transmitted.	i	[5+5]	
$-$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Explain vestigial side band modulation.	AC '		Λ
To September \$			[10]\	/

AG	AG AG	AG	AG	AG	AG	/
6.a) b)	Explain direct FM. A 100 MHz carrier is frequence maximum frequency deviation FM carrier. Now find the bamplitude is doubted. Determine the modulating signal is also determined.	n is 1 MHz. Dete andwidth of the ine the bandwidt	rmine the approx	ximate bandwidth	of the	f
7.a) b)	Explain phase locked loop. An angle modulated wave is do $\Phi(t) = 0$		uation + 10 cos 2000πt)	1		
4G	Find: The power of the modulated ii) The maximum frequency de iii) The maximum phase deviat	signal, viation	AG	± arms	AG	A
	iv) The bandwidth of the signal	l.			[4+6]	
8.a) b)	Explain average noise figure of Let a message signal m(t) be density (PSD) of m(t) is $S_M(f) = \begin{cases} a f \\ 0 \end{cases}$	transmitted using $ W, f \le 0$, otherv	g SSB modulation W vise	AG	AG	<u> </u>
(),a) b)	Where 'a' and 'W' are constant added to the SSB modulated to output SNR of the receiver. Describe noise in DSB and SSB An unmodulated carrier of am	ovave at the rece OR Systems: plitude A, and f	iver input. Find A Trequency for and	an expression f	or the [4+6] white	1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	noise are summed and then paranoise spectral density to be of carrier frequency, f _c . Determine noise ratio is high. Describe PAM (single polarity, of the signals given below are not band limited signals. Assume a	f height N ₀ /2 and the output SNF double polarity).	d bandwidth 2V R for the case w	W, centered above then the carrier -	ut the - to - [4+6]	<u> </u>
~~~11 <u>~</u> \	case and find the corresponding i) $e^{-2 t }$ , ii) $e^{-2t} \cos 100t u(t)$ , iii) t	minimum sampli e ^{-t} u(t), iv) G ₂₀ (t <b>OR</b>	ng rate.		[4+6]	
\	Explain generation and demodul Generalize the uniform sampling $f_m$ Hz but not centered at $\omega = 0$ . and $f_h$ where $f_h - f_l = f_m$ . Show the must be 2 $f_h$ /n samples per secon	The positive speat the minimum d where f _h is the	ectrum of such s uniform samplin	signals lies between signals lies between	een f _l	<u> </u>
	n is the largest integer less than f	$f_h/f_m$ .	_ 1	=	[4+6]	

AG AG AG AG AG AG