Code No: 115DQ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech III Year I Semester Examinations, February/March - 2016 ANTENNAS AND WAVE PROPAGATION

(Electronics and Communication Engineering)

Max. Marks: 75 Time: 3 hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A

	Tare A	(25 Marks)
1.a)	Define beam efficiency.	[2]
b)	An elliptically polarized wave traveling in the positive z direction in air	has x and y
0)	components:	
	$F_{V} = 3 \sin (\cot - \beta x) \qquad (V m^{2})$	
	$F_V = 3 \sin (\omega t - \beta x + 75^\circ) \qquad (V m^*)$	(2)
	Find the average power per unit area conveyed by the wave.	[3]
c)	Explain important features of a loop antenna.	[2]
d)	Why are wide band antennas required? Name any two wide band antennas.	[3]
e)	What are the limitations of microstrip antenna?	1-1
_′	List different types of reflectors.	[3]
f)	Define different types of array of antennas.	[2]
g)	What is Huygen's principle?	[3]
h)	We the authorized for relation between MIII and skip distance.	[2]
i)	Obtain the roughness factor at 3MHz for an earth having $\sigma = 0.5$. With $\sigma = 0.5$.	
j)	Calculate the ratio of roughness factors for the same earth and same θ if frequency is	
	doubled.	[3]
	Part-B	(50 Marshan)

(**50** Marks)

- Show that the Radiation resistance of $\lambda/2$ antenna is 73 Ω . 2.a)
 - Obtain the relative amplitudes of radiation, induction and electro static fields at a b) distance of 2\(\lambda\) from a short current element having an uniform current of 1mA along its [5 | 5]length.

OR

- Explain radiation resistance of loops. 3.a)
 - A plane wave is incident on a short dipole, assume the wave is linearly polarized with E b) in the y direction. The current on the dipole is assumed constant and in the same phase over its entire length, and the terminating resistance R_{T} is assumed equal to the dipole radiation resistance R_r, the antenna loss resistance R_L is assumed equal to zero. What is [5+5](i) the dipoles's maximum effective aperture and (ii) its directivity?
- With neat illustrations, explain the geometry and requirements for a helical antenna 4.a) radiating into axial mode, and give the relevant design relations.
 - Describe the requirements, performance characteristics and applications of Yagi-Uda b) [5+5] Antenna.

- Explain the design considerations of Pyramidal Horns. 5.a)
 - What is folded dipole? List its characteristics and its applications. 15+51 b)
- Explain about non metallic dielectric lens antenna. 6.a)
 - Estimate the curvature profile for a parabolic reflector antenna, and hence define the b) terms: Aperture Blocking, Focal Length to Diameter Ratio. [5.5]

Explain in detail about corner reflector design. 7.a)

0

1

- Calculate and plot the radiation pattern of $\lambda 2$ dipole antenna spaced 0.15 λ from an b) infinite flat sheet for assumed antenna loss resistance $R_{\rm f}=0~\Omega$ and 5Ω . Express the patterns in gain over a \(\lambda\)2 dipole antenna in free space with the same power [5:5] input. Assume zero loss resistance.
- Use the principle of pattern multiplication and draw the radiation pattern with 8 element 8.a) array with $d = \lambda/2$.
 - Explain typical sources of error in antenna measurement. b)

[5 : 5]

- With a neat block diagram, explain the method of measurement of radiation pattern of 9.a)
 - For a 16 element Broadside array with λ 2 spacing, derive the array factor and hence b) calculate its BWFN, first side lobe level, directivity and effective area.
- Explain the salient features of tropospheric scatter propagation 10.a)
 - Derive an expression for the variation of field strength of a space wave with antenna heights and distance involved. What happens when the distance is large? OR
- 11.a) With neat illustrations, explain the structure and formation of ionospheric layers, and the corresponding frequencies of propagation.
 - b) Explain the concept of reduction factor and numerical distance in ground wave 15 - 5 propagation.

--00000--