....

R13

21221

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November/December - 2016 CONTROL SYSTEMS ENGINEERING

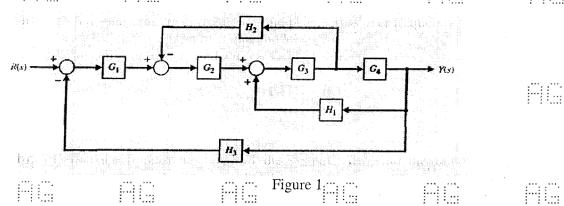
(Common to ECE, ETM)

Time: 3 hours				Max. Marks: 75
			and the second	

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A										
			W	*	(25 Marks)					
1.a)	[2]									
b)	b) List out the classification of control systems.									
c)										
d)	Write the effects of pro What is the need of ang	portional deriva	tive systems on	second.order resp	onse[3]					
ë): :.:	:What is the need of ang	le of asymptote	s in Rööt-tocus?	# # # # # # # # # # # # # # # # # # #	[2]					
f)										
	Draw the pole-zero plot				[2]					
	h) Define gain-cross over frequency and phase-cross over frequency.									
i)	Draw the state diagram	of a state model	l .		[2]					
j)	What is meant by diago	nalization? Exp	lain	**************************************	[3]					


PART - B

(50 Marks)

- 2.a) Discuss the characteristics of feedback in closed loop control system.
- b) Define the Impulse response of the system. Also find the impulse response of the system with open loop transfer function.

$$G(s) = \frac{10}{s(s+3)}$$
OR

3. ... Obtain the transfer function $\frac{Y(s)}{R(s)}$ for the flowing block diagram (figure 1):[10]

Sketch the time response of the following figure 2 first order system when excited with unit step input: R(s) Figure 2 A second order system has a transfer function $(s) = \frac{25}{(s^2+8s+25)}$, Determine the settling time and peak overshoot when the system is excited with unit step input. [5+5]OR 5.a) Find the steady state errors for the unit step, unit ramp and unit parabolic inputs for the system whose transfer function is $G(s) = \frac{1000(s+1)}{(s+10)(s+50)}$ Discuss the significance of 'type' and 'order' of the system in time response analysis. b) Define Root locus and explain procedure to sketch the Root-locus for a given transfer function. OR Comment on system stability if the characteristic equation of closed loop system is 7.a) $Q(s) = s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$ A unity feedback system with open loop transfer function $G(s) = \frac{K}{s(s+1)}$. Determine the b.) range of 'K' for which system to be stable. Sketch the Bode plot for the unity feedback system with open loop transfer function 8. $G(s) = \frac{80}{s(s+2)(s+20)}$ Also find its gain margin and phase margin. OR FIRST State and explain Nyquist stability criterion. 9.a) What is PID controller and write its merits and demerits. [5+5]b) What is state transition matrix and derive its expression. b) Obtain the state model for the system which is described as $+5\frac{dy}{dt} + 10y(t) = 5u(t)$ Here, 'y' is output variable and 'u' is input variable. [4+6]11.a) Explain the concept of controllability and observability. b) Write the advantages of state space analysis over transfer function approach. ---00O00---