	A Code	No: 154AV JAWAHARLA B.Tech II Y	Year II Semeste	CHNOLOGICA r Examinations, GNETIC FIELI	November/Dec OS AND WAVI	R18 TY HYDERABA ember - 2020		
			(Electronics and Communication Engine			Max. Marks: 75		
	AG	A C	All que	estions carry eque	estions al marks	AG	AG	
	1.a) b)	Using Gauss's law, find \overline{E} at any point due to long infinite charged wire. Derive the expression for energy stored and energy density in a static electric field. [8+7]						
(2.a) b) 3.a)	What is the capacitance between two concentric spheres and obtain an expression for it. State and explain Biot-Savart law. Define and explain the terms scalar and vector magnetic potential. How to determine these quantities for a magnetic field.						
	b) A steady current element $10^{-3} \ \overline{a_z}$ Am is located at the origin in free span						n free space. Wi	iat is the
		magnetic field	\overline{B} due to this ele	ement at point (0,0	0,1) m.		[8+7]	
	4.a) b)	Write Maxwell's equations for free space in both point and integral form. Derive boundary conditions between two perfect dielectrics. [8+7]						
	5.a) b)	Explain modified ampere's law for time varying fields. Derive the equation of continuity for time varying fields.					[8+7]	
	△(\$\b)	A plane wave travelling in air is normally incident on a material with $\varepsilon_r = 4$ and $\mu_r = 1$ Find the reflection and transmission coefficients. State and prove Poynting theorem.						
	7.a)	Explain why the wavelength in a rectangular waveguide is greater than the free space						
	7.a)	wavelength						
	b)	The magnetic field in the TE ₁₀ mode in a rectangular waveguide is given by						
(A province	$H_z = \frac{j\beta a}{\sin\frac{\pi x}{2}} e^{j(\omega t - \beta x)}$, $H_z = \cos\frac{\lambda x}{2} e^{j(\omega t - \beta x)}$, $H_y = 0$. Using Maxwell's equations						
	$A(\dot{j})$	$H_{\omega} = \frac{j\beta a}{\pi} \sin \frac{\pi x}{d} e^{j(\omega t - \beta z)}, H_z = \cos \frac{\lambda x}{a} e^{j(\omega t - \beta z)}, H_y = 0. \text{ Using Maxwell's equations}$ determine the components of the electric field E.						
	8.a) b)	Derive the field component for TE waves in a metal rectangular waveguide. Explain about dominant and degenerate modes.					[9+6]	
	AG	AG	AG	00O00	AG	AG	AG	
	AG	A'G	AG	AG	AG	AG	AG	