| | | , ees. | ,····, ,····, | R13 | :***; :***. | | |---------------------------------------|---|---|--|--------------------------------|---|--| | | Code No: 115AM TAWAHARLAE NEHRU TECH | NOLOGICAL UNIVE | RSITY HYDE | RABAD | * | | | 4 | B. Tech III Year I Semester E ELECTRONIC MEASURI | Examinations, November EMENTS AND INSTR
Communication Engineer | UMENTATIO | 2016
N | proceedings. | | | | Time: 3 hours | Communication 22-8 | Ma | x. Marks: 75 | | | | | Note: "This question paper contains two | parts A and B. | FIG | AG | | | | | Part A is compulsory which carriconsists of 5 Units. Answer any of 10 marks and may have a, b, c as | ies 25 marks. Answer all ne full question from each | l questions in leach questions. Each questions | Part A. Part B uestion carries | | | | in energial p | AG AG | PART - A. | AG | (25 Marks) | | | | | 1.a) Define accuracy and precision.b) What is loading effect in voltmete | r? | | [2]
[3] | | | | : | c)Compare Moving coil with Moving | g iron instruments.
T and list its functions. | FIG | [2]
[3] | | | | • | e) Draw the block diagram of spectro f) What are the advantages of digital g) Draw the block diagram of Digita h) Name the different temperature se | Finstruments over analog I Data Acquisition System Consors and their advantag | m. | [2]
[3]
[2]
[3] | v | | | * * * * * * * * * * * * * * * * * * * | i) State the LVDT principle. | measurement | | [2]
[3] | | | | ** | | PART - B | | | | | | | | | | (50 Marks) | | | | | 2.a): Explain about source for different types of errors and precautions to minimize them. The accuracy of five digital voltmeters are checked by using each of them to measure a standard 1.0000V from a calibration instrument. The voltmeter readings are as follows: V ₁ =1.001v, V ₂ =1.002v, V ₃ =0.999v, V ₄ =0.998v and V ₅ =1.0000v. Calculate the average measured voltage and the average deviation. [5+5] | | | | | | | | 3.a): With a neat diagram, explain the working of a True RMS responding volt meter: b) A PMMC instrument has FSD of 100 μ A and a coil resistance of 1K Ω. Calculate the required shunt resistance value to convert the instrument into an ammeter with (i) FSD=100mA and (ii) FSD=1A. [5+5] | | | | | | | | 4.a) What is the principle of harmonic help of a functional block diagram b) Compare the selectivity character | 1 : : : : : : : : : : : : : : : : : : : | 1 1 1 1 1 1 | : : ' | | | a) With a neat sketch explain the operation of a heterodyne type wave analyzer. b) Explain the following terms associated with Spectrum Analyzer. iii) Sensitivity ii) Dynamic Range iii) Harmonic Mixing Analyzer. x x x x x [5+5] ***** | 6.a) | Explain how Lissajous input. Show how to estin Derive an expression for | nate input if the pelectrostatic def | pattern is (i) Ci
lection sensitiv | rcle (ii) Ellipse (| ies of unknown
(iii) Parabola.
[5±5] | | |------------|---|---|--|--------------------------------------|--|--| | 7.a)
b) | Draw the block diagram Derive the expression for | OI
of storage oscillo
r vertical deflecti | oscope and exp | lain the function beam in CRT. | of each block. | | | b) | Explain how LVDT is us Show that a parallel preasurement of linear ar | plate capacitor | serves as the | ent.
most suitable | transducer for [5+5] | | | b) | Show that a parallel preasurement of linear a A transducer that meas excited by 7.5V. When elements change resistan | nd angular displaures force has i
a 980 dyne forc | serves as the acements. nominal resting to is applied, a | g resistance of
all four equal re | 300 Ω and is | | | 10.a) | The basic AC bridge con
AB: R=400Ω, BC: R
L=10mH. Oscillator freq
What is Wien`s bridge? I | sists of the follow
=150Ω, CD: uency is 1KHz. I
Derive the expres | wing constants: unknown and Determine the constant free the t | DA: $R=100 \Omega$ constants of arm | in series with CD. [5+5] | | | : b);: | Explain different method
Explain different steps :
Mode. When asynchrono | adopted by a co | measurements
ontroller in dat | a acquisition ii | asynchronous [5+5] | | | | | ooOc | 90- | RE | | | | | | | PiC | | | | | | | | | | ĦS. | | | | ĦG | | | | PC. | |