AG AG AG AG AG AG

	Code	No: 124CV	R15
		WAHARLAL NEERU TECHNOLOGICAL UNIVERSITY HY	DERABAD
	4	B.Tech If Year II Semester Examinations, May - 2017	entre. Le serve
ΔC		ELECTRONIC CIRCUIT ANALYSIS	
	Time:	Common to ECE, EIE, ETM) 3 Hours M	ax. Marks: 75
	Note:	This question paper contains two parts A and B.	. D
		Part A is compulsory which carries 25 marks. Answer all questions Part B consists of 5 Units. Answer any one full question fr	
A second	A	Each question carries 10 marks and may have a, b, c as sub question	
Δ ($$	\triangle	λ(j Δ(j Δ(j Δ(j Δ	$(A \rightarrow A)$
/ / \	/	PART-A / /	(25 Marks)
	1.a)	Why is a CE amplifier widely used? List down its main limitations. What are the typical values of h-parameters of CE configuration?	
		What is f_T of a BJT?	[3] [2]
	,	State Miller's theorem.	[3]
		Compare Frequency stability of crystal oscillator, RC and LC oscill	
A(1)		What are the advantages of negative feedback?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Z — A Shares		Classify power Amplifiers.	[3]
	i)	What is effect of cascading on single tuned amplifier?	[2]
	j)	What is stagger tuned amplifier?	[3]
		PART-B	(50 Marks)
	* / 1	Draw the CE amplifier with un bypassed emitter resistance and der	(50 Marks) iye expression
AG	<u> </u>	Draw the CE amplifier with un bypassed emitter resistance and der for Rand Ay.	ive expression
AG	b) 2	Draw the CE amplifier with un bypassed emitter resistance and der for R; and A. A transistor in CB circuit has the following set of 'h' paramet	ive expression ers. $h_{ib} = 20$,
AG	b) 1	Draw the CE amplifier with un bypassed emitter resistance and der for Rand Ay.	ive expression ers. $h_{ib} = 20$,
AG	b) /	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and A_i . A transistor in CB circuit has the following set of 'h' paramet $h_{fb}=0.98,\ h_{rb}=3\times10^{-4},\ h_{ob}=0.5\times10^{-6}.$ Find the values if $R_i,\ R_o,\ R_s=600\Omega$ and $R_L=1.5\ k\Omega.$	ive expression ers. $h_{ib} = 20$, A_i and A_v , if [5+5]
AG.	b) 1 1 3.a) I	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and Λ_i . A transistor in CB circuit has the following set of 'h' paramet $h_{tb}=0.98,\ h_{rb}=3\times10^{-4},\ h_{ob}=0.5\times10^{-6}.$ Find the values if $R_i,\ R_o,\ R_s=600\Omega$ and $R_L=1.5\ k\Omega$. OR	ive expression ers. $h_{ib} = 20$, A_i and A_v , if [5+5]
AG AG	3.a) I	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and A_i . A transistor in CB circuit has the following set of 'h' paramet $h_{fb}=0.98,\ h_{rb}=3\times10^{-4},\ h_{ob}=0.5\times10^{-6}.$ Find the values if $R_i,\ R_o,\ R_s=600\Omega$ and $R_L=1.5\ k\Omega.$	ive expression ers. $h_{ib} = 20$, A_i and A_v , if $[5+5]$ everall current
AG AG	b) 2 1 3.a) [b) \(\frac{9}{5}	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and A_i . A transistor in CB circuit has the following set of 'h' paramet $h_{tb} = 0.98$, $h_{rb} = 3 \times 10^{-4}$, $h_{ob} = 0.5 \times 10^{-6}$. Find the values if R_i , R_o , $R_s = 600\Omega$ and $R_L = 1.5 \text{ k}\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance.	ive expression ers. $h_{ib} = 20$, A_i and A_v , if $[5+5]$ everall current
AG AG	b) A I I b) \(\begin{aligned} & \begin{aligned}	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and A_i . A transistor in CB circuit has the following set of 'h' paramet $h_{tb} = 0.98$, $h_{rb} = 3 \times 10^{-4}$, $h_{ob} = 0.5 \times 10^{-6}$. Find the values if R_i , R_o , $R_s = 600\Omega$ and $R_L = 1.5 \ k\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance. With the help of a neat circuit diagram describe the working amplifier.	ive expression ers. $h_{ib} = 20$, A _i and A _v , if [5+5] everall current of a cascade [5+5]
AG AG	3.a) I b) \(\begin{array}{c} arr	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and A_i . A transistor in CB circuit has the following set of 'h' paramet $h_{fb}=0.98$, $h_{rb}=3\times10^{-4}$, $h_{ob}=0.5\times10^{-6}$. Find the values if R_i , R_o , $R_s=600\Omega$ and $R_L=1.5~k\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance. With the help of a neat circuit diagram describe the working	ive expression ers. $h_{ib} = 20$, A _i and A _v , if [5+5] everall current of a cascade [5+5]
AG AG	3.a) I b) 3 a 4.a) E c	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and A_i . A transistor in CB circuit has the following set of 'h' paramet $h_{fb}=0.98$, $h_{rb}=3\times10^{-4}$, $h_{ob}=0.5\times10^{-6}$. Find the values if R_i , R_o , $R_s=600\Omega$ and $R_L=1.5~k\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance. With the help of a neat circuit diagram describe the working amplifier. Draw the hybrid- Π model of common emitter configuration and component in the Π -model. Derive the equation for voltage gain bandwidth product for CE ampli	ive expression ers. $h_{ib} = 20$, A_i and A_v , if $[5+5]$ everall current of a cascade $[5+5]$ describe each
AG AG	3.a) I b) \(\begin{align*} & \text{A} & \text{B} & \text{C} &	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and Λ . A transistor in CB circuit has the following set of 'h' paramet $h_{tb} = 0.98$, $h_{rb} = 3 \times 10^{-4}$, $h_{ob} = 0.5 \times 10^{-6}$. Find the values if R_i , R_o , $R_s = 600\Omega$ and $R_L = 1.5 \text{ k}\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance. With the help of a neat circuit diagram describe the working amplifier. Draw the hybrid- Π model of common emitter configuration and component in the Π -model. Derive the equation for voltage gain bandwidth product for CE amplification of the Π -model of the equation for voltage gain bandwidth product for CE amplification of Π -model.	ive expression ers. $h_{ib} = 20$, A_i and A_v , if $[5+5]$ everall current of a cascade $[5+5]$ describe each ifier. $[5+5]$
AG AG	3.a) I b) \(\begin{align*} & \text{A} & \text{B} & \text{C} &	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and Λ . A transistor in CB circuit has the following set of 'h' paramet $h_{tb} = 0.98$, $h_{rb} = 3 \times 10^{-4}$, $h_{ob} = 0.5 \times 10^{-6}$. Find the values if R_i , R_o , $R_s = 600\Omega$ and $R_L = 1.5 \text{ k}\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance. With the help of a neat circuit diagram describe the working amplifier. Draw the hybrid- Π model of common emitter configuration and component in the Π -model. Derive the equation for voltage gain bandwidth product for CE amplification of the Π -model of the equation for voltage gain bandwidth product for CE amplification of Π -model.	ive expression ers. $h_{ib} = 20$, A_i and A_v , if $[5+5]$ everall current of a cascade $[5+5]$ describe each ifier. $[5+5]$
AG AG	3.a) I b) 3 a 4.a) E c c b) E 5.a) E c b)	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and A_i . A transistor in CB circuit has the following set of 'h' paramet $h_{fb}=0.98$, $h_{rb}=3\times10^{-4}$, $h_{ob}=0.5\times10^{-6}$. Find the values if R_i , R_o , $R_s=600\Omega$ and $R_L=1.5~k\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance. With the help of a neat circuit diagram describe the working amplifier. Draw the hybrid- Π model of common emitter configuration and component in the Π -model. Derive the equation for voltage gain bandwidth product for CE ampli	ive expression ers. $h_{ib} = 20$, A_i and A_v , if $[5+5]$ everall current of a cascade $[5+5]$ describe each ifier. $[5+5]$
AG AG	3.a) I b) 3 a 4.a) E c c b) E 5.a) E c b)	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and Λ . A transistor in CB circuit has the following set of 'h' paramet $h_{tb} = 0.98$, $h_{rb} = 3 \times 10^{-4}$, $h_{ob} = 0.5 \times 10^{-6}$. Find the values if R_i , R_o , $R_s = 600\Omega$ and $R_L = 1.5 \ k\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance. With the help of a neat circuit diagram describe the working amplifier. Draw the hybrid- Π model of common emitter configuration and component in the Π -model. Derive the equation for voltage gain bandwidth product for CE amplifications of the component in the Π -model of common source Π or Π is customers. The common source Π is customers and Π is customers and Π is customers.	ive expression ers. $h_{ib} = 20$, A_i and A_v , if $[5+5]$ everall current of a cascade $[5+5]$ describe each ifier. $[5+5]$ OS amplifier n and find its
AG AG	3.a) I b) 3 a 4.a) E c c b) E 5.a) E c b)	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and Λ . A transistor in CB circuit has the following set of 'h' paramet $h_{tb} = 0.98$, $h_{rb} = 3 \times 10^{-4}$, $h_{ob} = 0.5 \times 10^{-6}$. Find the values if R_i , R_o , $R_s = 600\Omega$ and $R_L = 1.5 \ k\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance. With the help of a neat circuit diagram describe the working amplifier. Draw the hybrid- Π model of common emitter configuration and component in the Π -model. Derive the equation for voltage gain bandwidth product for CE amplifications of the component in the Π -model of common source Π or Π is customers. The common source Π is customers and Π is customers and Π is customers.	ive expression ers. $h_{ib} = 20$, A_i and A_v , if $[5+5]$ everall current of a cascade $[5+5]$ describe each ifier. $[5+5]$ OS amplifier n and find its
AG AG	3.a) I b) 3 a 4.a) E c c b) E 5.a) E c b)	Draw the CE amplifier with un bypassed emitter resistance and der for R_i and Λ . A transistor in CB circuit has the following set of 'h' paramet $h_{tb} = 0.98$, $h_{rb} = 3 \times 10^{-4}$, $h_{ob} = 0.5 \times 10^{-6}$. Find the values if R_i , R_o , $R_s = 600\Omega$ and $R_L = 1.5 \ k\Omega$. OR Draw the Darlington circuit and derive the expressions for the orgain, voltage gain, input impedance and output impedance. With the help of a neat circuit diagram describe the working amplifier. Draw the hybrid- Π model of common emitter configuration and component in the Π -model. Derive the equation for voltage gain bandwidth product for CE amplifications of the component in the Π -model of common source Π or Π is customers. The common source Π is customers and Π is customers and Π is customers.	ive expression ers. $h_{ib} = 20$, A_i and A_v , if $[5+5]$ everall current of a cascade $[5+5]$ describe each ifier. $[5+5]$ OS amplifier n and find its

