AG AG AG AG AG AG AG Code No: 137EK **R16** ## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations December - 2010 | | B. Tech IV Year I Semester Examinations, December - 2019 | | | |-------------------|--|---|---| | 7 X Y Y | MICROWAVE ENGINEERING (Electronics and Communication Engineering) Max. Max. Max. Max. Max. Max. Max. Max. | A. Part B | / | | A (].a) b) c) | What are the applications of Microwaves? Define the phase and group velocities. What is post? What are the applications? | 25 Marks) [2]
[3]
[3]
[2] | 1 | | d) e) f) g) h) i) | Compare probe and loop connectors. What are the limitations of conventional tubes at microwave frequencies? What are the advantages of slow wave structures? How to separate a n mode in Magnetron? What are the applications of Gunn diode? Why Isolator is used in microwave measurements? Why Z and Y parameters are not measured at microwave frequencies? | [3]
[2]
[3]
[2]
[3]
[2]
[3] | / | | | PART – B | | | | AG. | | 750 Marks) Vaveguides [10] | / | | 3.a)
b) | Why TEM wave propagation is not possible in rectangular wave guide
Show that at frequencies much higher than the cut-off frequency, the Q of a r
guide carrying the dominant TE10 wave approaches the value $Q \to b\alpha_m$ | | | | AG | Where $\overline{\alpha}_m = \sqrt{w \mu_m \sigma_{m/2}}$ is the attenuation factor for a wave propagating in the guide walls? | e metal of [6+4] | / | | 4.a) | What are the different types of waveguide attenuators? Explain their working | with neat | | | b) | diagrams. Draw the structure of Magic Tee and write its characteristics. OR | [5+5] | | | △ (5.a) | Draw the structure of Ferrite isolator and explain its working. Explain how Gyrator gives phase shift and explain it with neat diagram. | [545] | 1 | | 6. | How the oscillations are generated in reflex klystron and explain bunching proapple gate diagram and also derive the equation for efficiency. OR | ocess with [10] | | | 7. | What are the different modes of operation of TWT and explain them. | [10] | | | ΔG | AG AG AG AG AG | | ^ | | | AG A | | | | |--|--|---|--------------------|-------------------------------------|---|---------------------------------|----------|-------------|--|--|--| | 8. How cross-field is used to generate oscillations in Magnetron and derive the Hull cut-off condition? [10] | | | | | | | | | | | | | | AG. | What is mean | n by transferred e | OR
electrôn dévices? | Explain its princ | ciple of operation | and/draw | A | | | | | | 10.a) Derive the S matrix of directional coupler and define all the parameters. b) State and derive the unitary property of S matrix. [6+4] | | | | | | | | | | | | | OR 11. How to find Low and high VSWR of a given load at microwave frequencies? Explain. AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA | | | | | | | | | | | | | AG | AG | AG | AG | AG | AG | | \triangle | | | | | | ooOoo | | | | | | | | | | | | | | i tejiron | Remark on swice su | m in Encentiagoria
Centrolitaine | asernia in ensitat
Veralistico como en | taal oli vuotatki
Virginista | | | | | | | | AG A | 12.8856 | | | | | | | | | | AG \triangle | | | | | | | | | | | | for E | | | | | | | | | Λ | | | | | A | | | | | | AG | AG | AG | AG | AG | | AG | \triangle | A 11 (12) | | | | | ٨ | | | | | | 7 | * 100 | | | | | AG | 4 | | | | | | | | | | | | | | | | | | | A | | | | | | | Λ | | | | | | AG | A(j | AG | AG | AG | AG | AG | \vdash | | | | | | | | | | | | | | | | |