Code No: 117FE JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, November/December - 2017 MICROWAVE ENGINEERING (Electronics and Communication Engineering) Time: 3/Hours Max. Marks: 75 Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. Part- A (25 Marks) Mention the application of waveguides. [2] Write short notes on power transmission and power losses of rectangular waveguide.[3] List out the functions of various waveguide components and their applications. c) [2] d) Explain any one application of Magic Tee. [3] Classify microwave tubes. [2] e) Differentiate two cavity klystron and Reflex klystron. f) [3] Explain RWH theory. [2] g) Mention the application of TED's/ h) [3] Explain the significance of scattering matrix [2] What is the need for an isolator in MW measurements and where it is placed? j) [3] Part-B (50 Marks) Explain why TEM mode does not exist in a circular wave guide. What is the significance of Q in resonant circuits? Derive a general expression Q for a series resonant circuit. What happens to Q when circuit is loaded? [5+5] OR Show that TM₀₁ and TM₁₀ modes does not exist in a rectangular waveguide. 3.a) A rectangular wave guide with dimension of 8×4 cm operates in the TM11 mode at b) 10Ghz. Determine the characteristic wave impedance. What is a cavity resonator? Discuss the applications of cavity resonator. 4 a) Derive the expression for Q-factor of rectangular cavity. [5+5]b) OR 5. Write short notes on: a) Wave guide phase shifter b) Hybrid ring [5+5]Draw the mode curves of Reflex klystron and derive the relation between mode number

In a two-cavity klystron the parameters are, input power=10mW, voltage gain=20dB, R_{sh}

of input cavity =25K Ω , R_{sh} of output cavity =35K Ω , load resistance = 40 K Ω . Find input

Explain the significance of slow wave structure in the amplification process. List out the

[5+5]

and repeller in Reflex klystron.

voltage, output voltage and the power to the load.

major differences between TWT and klystron. Explain how amplification takes place in Helix TWT

b)

7.a)

AG AG AG AG AG AG AG

8. 	List and exp With a neat How is bund	sketch explain the	oes of magnetrons OR The structure and points a cavity magnetic	rinciple of operat ron? Explain.	ion of TWT amp	[10] olifier. [5+5]	A
10.	a) Give the meb) Define VSV	asurement procedure. Describe the procedure for me	dure for measurin methods for mea OR	ng Q factor of res suring high and le	onant cavity. ow VSWR's.	[5+5]	
AG	AG.	AG	~ooOoo	- 4G	AG	AG	A
AG	AG	AG	AG	AG	AG	AG	Δ
AG	AG	AG	AG	AG	AG	AG	A
AG	AG	AG	AG	AG	AG	AG	A
AG	AG	AG	AG	AG	AG	AG	Д