AG	AG AG AG AG AG AG	A								
	Code No: 117FZ									
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, November/December - 2017										
	OPERATIONS RESEARCH	Α.								
$\Delta(\hat{A})$	(Common to ME, CSE, IT, MCT, AME, MIE, MSNT, AGE) Time: 3 Hours (Common to ME, CSE, IT, MCT, AME, MIE, MSNT, AGE) Max. Marks: 75									
/ / \ \	Note: This question paper contains two parts A and B.	,								
	Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question									
	carries 10 marks and may have a, b, c as sub questions.									
	PART- A (25 Marks) 1.a) What is Operations research? (25 Marks)	Λ								
	1.a) What is Operations research? (25-Marks)									
	b) What is a model? List the various classification schemes of Operations Research models.									
	c) How the assignment problem can be viewed as a linear programming problem? [2]									
	d) Formulate the travelling – Salesman problem as an assignment problem. [3]									
	e) Define the problem of sequencing. f) What are the situations which make the replacement of items necessary?	\widehat{y} \widehat{y} \widehat{y} \widehat{y}								
	g) What are the characteristics of game theory? h) What is inventory management? Write the major decisions concerning inventory? [3]	/								
	i) What are major limitations of simulation? [2]									
	j) What do you understand by a queue? Give some important applications of queuing theory? [3]									
A		Λ								
AG	$\triangle \bigcirc \triangle \bigcirc \triangle \bigcirc \triangle \bigcirc \triangle \bigcirc \bigcirc$									
	2. What do you mean by LPP? What are its limitations? Use penalty (or Big-M) method to									
	maximize $z = 3x_1 - x_2$ Subject to the constraints									
رمندور	$2x_1 + x_2 \ge 2$; $x_1 + 3x_2 \le 3$; $x_2 \le 4$	Α								
$A(\hat{A})$	$x_1, x_2 \ge 0$ What is a simplex? Describe simplex method of solving linear programming problem.	\triangle								
/ / \	3. What is a simplex? Describe simplex method of solving linear programming problem. [10]	,								
	4. Find the optimal solution for the assignment problem with the following cost matrix. I II III IV V									
		Λ								
A(J		$/\!$								
	D 21 24 17 28 26 E 14 10 12 11 15 [10]									
OR										
A(A)	AG AG AG AG AG	A								

AG	5. There are three sources or origins which store a given product. These sources supply these products to four dealers. The capacities of the sources (S _i) and the demands at	_
AG	dealers (D _J) are as given below. $S_1 = 150, S_2 = 40, S_3 = 80$ $D_1 = 90, D_2 = 70, D_3 = 50, D_4 = 60.$ The cost of transporting the product from various sources to various dealers is shown in the table below. $D_1 D_2 D_3 D_4$ $S_1 27 23 31 69$ $S_2 10 45 40 32$ $S_3 30 54 35 57$ Find out the optimum solution for transporting the products at a minimum cost. [10]	
AG	6. Find—the sequence that minimizes the total elapsed time required to complete the following jobs.	_
	Processing times in hours No. of jobs : 1	
AG	7. A truck owner finds from his past records that the maintenance cost per year of a truck whose purchase price is Rs.8000, are given below: Year : 1 2 3 4 5 6 7 8 Maintenance cost (Rs): 1000 1300 1700 2200 2900 3800 4800 6000 Resale Price : 4000 2000 1200 600 500 400 400 400 Determine at what time it is profitable to replace the truck? [10]	A
AG	8. The payoff matrix of a game is given. Find the solution of the game to the player A and B	A
AG	9. Find the optimal order quantity for a product for which the price breaks are as follows: Quantity Unit cost (Rs.) $0 \le q_1 < 500$ $500 \le q_2 \le 750$ $0 \le 0$	A
AG	$750 \le q_3$ 8.75 The monthly demand for a product is 200 units, the cost of storage is 2% of the unit cost and the cost of ordering is Rs. 350.	A
AG	AG AG AG AG AG	A

AG	10. A super custome the cour a) The p b) The e c) If a cr	market has two ger is exponential value at the rate of probability of have expected percenta	girls ringing up so with mean 4 min 10 per hour, then ing to wait for se ge of idle time for it, find the expedinciple of optimal of a dynamic provise simulation	ales at the counte utes, and if people calculate: rvice; or each girl; eted length of his ality in dynam ogramming prob	waiting time. waiting time. ic programming lem?	filographic and give a	
AG	AG	ÅG	——••O		AG	AG,	A
AG	AG	AG.		AG	AG	AG	<u> </u>
AG	AG	AG	AG	AG	AG	ĄG	Д
AG	AG	AG	AG	AG	AG	AG	A
AG	AG	AG	ĄG	AG	AG	AG	A
AG	AG	AG	·AG	AG	AG	AG	A