(25 Marks)

Code No: 113BT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December-2014 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Electronics and Communication Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A

		(20 1120110)
1.a)	What are the axioms of probability?	[2M]
b)	Explain the types of Random variables.	[3M]
c)	Write the properties of probability distribution function?	[2M]
d)	A Continuous random variable X has a probability density function g	iven
ĺ	by $f(x) = 3x^2$ $0 \le x \le 1$. Find a such that $P(X \le a) = P(X \ge a)$.	[3M]
e)	Define Marginal distribution & Marginal density Functions.	[2M]
f)	Statistically independent Random Variables X and Y have moments in	$m_{10}=2,$
	$m_{20}=14$, $m_{02}=12$, $m_{11}=-6$. Find μ_{22} .	[3M]
g)	State any 2 properties of Cross Correlation Function.	[2M]
h)	For the given auto correlation function for a stationary	process is
	$Rxx(\tau) = 25 + \frac{4}{1 + 6\tau^2}$ Find the mean and variance.	[3M]
i)	State any 2 properties of the power density spectrum?	[2M]
j)	Write Wiener-Khinchine relations?	[3M]

Part-B (50 Marks)

- 2.a) A binary communication channel carries data as one of the two types of signals denoted by 0 and 1. Owing to noise a transmitted 0 is sometimes received as 1 and a transmitted 1 is sometimes received as a 0. For a given channel, assume a probability of 0.94 that a transmitted 0 is correctly received as a 0 and a probability of 0.91 that a transmitted 1 is received as a 1. Further assume a probability of 0.45 of transmitting a 0. If a signal is sent, Determine
 - (i) Probability that a 1 is received.
 - (ii) Probability that a 0 was received
 - (iii) Probability that a 1 was transmitted, given that a 1 was received
 - (iv) Probability that a 0 was transmitted, given that a 0 was received
- b) State Random Variable with suitable example.

OR

- 3.a) State and Prove the Bayes theorem of probability.
- b) Let A_1 , A_2 , A_3 are 3 mutually exclusive and exhaustive events associated with experiment $E_1.B_1$, B_2 , B_3 are 5 mutually exclusive and exhaustive events associated with experiment E_2 .

	B_1	B_2	B ₃	p(Aj)
A_1	· 3/36	*	5/36	*
· A ₂	5/36	4/36	5/36	14/36
A_3	*	6/36	*	*
P(Bj)	12/36	14/36	*	*

- i. Find missing Probabilities
- ii. $P(B_3/A_1)$ and $P(A_1/B_3)$
- iii. A_1,B_1 are independent or not
- 4.a) Explain any 4 Properties of Probability Distribution Function.
 - A Continuous random variable X defined by a probability density function given b) by $f(x) = 5(1-x^4)/4$ $0 \le x \le 1$. Find E[X], $E[X^2]$ and Variance.

OR

- Find mean and variance of Uniform Random Variable. 5.a)
 - b) Find the characteristic function and first moment for

$$f_x(x) = (1/b)\exp(-(x-a)/b) \quad x \ge a$$

= 0 else

Following table represent the joint probability density function 6.a)

** >		1	2	3
X→	1	1/12	1/6	0
	2	0	1/9	1/5
	3	1/18	1/4	2/15

- (i). Evaluate the marginal distribution of X and Y.
- (ii). Conditional distribution of X given Y=2.
- (iii). Conditional distribution of Y given X=3.
- (iv). $P(X \le 2, Y = 3), P(Y \le 2), P(X + Y < 4)$
- Two random variables X and Y have joint characteristic function $\Phi_{X,Y}(\omega_1,\omega_2) = \exp(-2\omega_1^2 - 8\omega_2^2)$

Show that X and Y are zero mean random variables and uncorrelated

OR

- Two random variables Y1 and Y2 related to arbitrary random variables X and Y 7.aby co-ordinate rotation $Y_1 = X\cos\theta + Y\sin\theta$, $Y_2 = -X\sin\theta + Y\cos\theta$.
 - i) Find the covariance function of Y_1 and Y_2 .
 - ii) For what value of θ , the random variables Y_1 and Y_2 are uncorrelated
 - The joint probability density function of f(x,y) is given by $f(x,y)=Ae^{-(x+y)}$ $0 \le x \le y$, $0 \le y \le \infty$

$$f(x,y)=Ae^{-(x+y)} \qquad 0 \le x \le y, \ 0 \le y \le \infty$$

- (i). Find the value of A
- (ii). Find the marginal density of X and Y.
- (iii). Verify that whether X and Y are independent.

8.a) Statistically independent zero mean Random process X(t) and Y(t) having auto correlation function $R_{XX}(\tau)=\exp(-\mid \tau\mid)$ and $R_{YY}(\tau)=\cos(2\pi\tau)$ respectively. Find Cross correlation function(CCF) of $W_1(t)$ and $W_2(t)$ if

$$W_1(t) = X(t) + Y(t)$$
 and $W_2(t) = X(t) - Y(t)$

b) State any 4 Properties of Auto Correlation Function

OR

- 9.a) Prove that random process $X(t)=A \cos(\omega_c t + \theta)$ is a wide sense stationary process if it is assumed that A, ω_c are constants and θ is uniformly distributed over interval $0 \le \theta \le 2\pi$
 - b) Derive the Mean & Mean -Squared value of output response of a linear system.
- 10.a) Explain any 4 Properties of Power Density Spectrum.
 - b) Derive the power density spectrum of output of a system, in terms of its input PSD.

OR

- 11.a) Derive the relationship between Cross PSD & Cross Correlation Function.
 - b) The PSD of random process is given

$$\mathbf{Sxx}(\boldsymbol{\omega}) = \begin{cases} \pi, & |\boldsymbol{\omega}| < 1 \\ 0, & elsewhere \end{cases}$$

Find its Autocorrelation function.

---00000---