Code No: 153BQ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, October - 2020 PROBABILITY THEORY AND STOCHASTIC PROCESSES		
(Electronics and Communication Engineering) Time: 2 hours Max. Marks: 75		
AG	Answer any five questions All questions carry equal marks	,
1.a) b)	Write about the Binomial and Poisson distributions with their characteristics. If A and B are independent events, prove that the events A' and B, A and B, and A and B' are also independent. [7+8]	
2.a) b)	If X and Y are two random variables which are Gaussian. If a random variable Z is defined as $Z=X+Y$, Find $f_{\overline{z}}(Z)$. State and prove Bayes theorem of probability. [7+8]	, <u>-</u>
3.a) b)	Distinguish between the monotonic and non-monotonic transformations. Prove that the variance of a weighted sum of uncorrected random variables equals the weighted sum of the variances of the random variables. [6+9] Find the moment generating function about origin of the Poisson distribution. Define conditional distribution and density function of two random variables X and Y.	/ \ \
5.a) b)	Discuss about the autocorrelation function and its properties Let X be a random variable defined, Find E [3X] and E[X²] given the density function as $f_x(x) = \begin{cases} (\pi/16)\cos(\pi x/8) & -4 \le x \le 4 \\ 0 & elsewhere \end{cases}$	
6.	A Gaussian random variable X having a mean value of zero and variance one is transformed to another random variable Y by a square law transformation. Find the density function of Y. [15]	
△ (¬7.a) b)	Discuss the relation between PSDs of input and output random process of an LTI system. Evaluate the PSD of a random process $z(t) = X(t) + y(t)$ where $x(t)$ and $y(t)$ are zero mean, individual random process. [8+7]	<u> </u>
8.a) b)	Discuss about the Entropy and Information rate and their measurement parameters. Explain the Source coding and mention the process of Huffman coding with an example. [7+8]	
AG	AG AG AG AG AG AG	Q'
AG	AG AG AG AG AG	C)