R16 Code No: 138EG JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year II Semester Examinations, December - 2020 PRODUCTION PLANNING AND CONTROL (Mechanical Engineering) Time: 2 Hours Max. Marks: 75 Answer any Five Questions **All Questions Carry Equal Marks** 1. Write about characteristics of various types of production systems. [15] A electrical Contractor's record during the last five weeks indicate the number of job requests: Week Requests 20 22 21 22 18 Predict the number of requests for week 6 using each of the following methods: a) Naïve b) A three year moving average method c) Exponential smoothing with α =0.30. Use 20 for week 2 forecast. [5+5+5] 3. Suppose a company produces a type of desk that has the BOM given below. The desk is made by assembling two drawers, two handles, one drawer frame, and two legs into a

AG

desk.

A				A A
Level No	Item description	No.Required	Lead Time(Weeks)	744
00/	Desk		1 / 15-4	7 \\
01	Desk top	1	2	
01	Desk back	1	1	
01	Leg/drawer module	2	1	
02	Drawer frame	1	1	
.02	Desk legs.	2	1 , , , , , , , , , , , , , , , , , , ,	1
02	Drawers	2	2	$1/\Lambda / 1$
02	Handles	2-1/\	2 / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\sqrt{-1}$

drawer module. Then two drawer modules, desk back and a desk top are assembled into a

AG

For the following desk requirements, construct a) the material requirement plans for the desk and b) Desk top and Desk back.

Week	1	2	3	4	5	6	7	8	9	10
Requirement		,. 	- A	-,	20	0	50	0	0	30
4(j =	A		$ \wedge$		/_	$\langle (\cdot) \rangle$		$\Delta(\cdot)$		[7+8]

AG AG AG AG AG AG A

AG AG AG AG AG AG AG A

4. Twelve tasks, with times and precedence require	rements as shown in the follow	ing table, are	
to be assigned to workstations using a cycle tim	e of 1.5 minutes. Immediate Predecessor	A (2	Λ
(minutes)	Predecessor		francisco de
b 0.2	a		
c 0.9	b		
d 0.6	С		
e 0.1 f 0.2		A />	Α
$\begin{array}{c c} A & A & A & A & A & A & A & A & A & A $	$\frac{\text{d,e}}{\text{A}}$		
h 0.1	g		,
i 0.2	h		
j 0.7	i		
k 0.3	j		
\wedge		AM	$ \wedge$
(a) Draw the precedence diagram for this line.			/
b) Compute the % of idle time and efficiency a	ecording to RPW method.	[7+8]	
5. The processing times for 7 jobs on three r Table below, and the processing order for	r all the jobs on the three	machines is	
A-C-B. Determine the optimal sequence of			F.
machines, and also find the total elapsed tin	$\frac{\text{ne.}}{3}$ 4 5 $\overline{6}$	[15]	$ \angle$ Δ
Processing Time on A (Hrs) 3 8	7 4 9 8	7	1
Processing Time on B (Hrs) 6 7	5 11 5 6	12	
Processing Time on C (Hrs) 4 3	2 5 1 4	3	
6. List out various charts used in LOB and explain	about each with a diagram	[15]	
			Λ
7. State and explain various steps involved in dispa	atching procedure.	[1/2]	James
 State and explain various applications of comp functions. 	outer in production planning an	d controlling [15]	
ooOoo			
$\Delta \Delta $	AC AC		Δ
DA DA DA DA	AG AG	AG	A
AG AG AG	AG AG	AG	<u> </u>
AG AG AG	AG AG	AG	
AG AG AG	AG AG	AG	Δ
AGAGAGAG			
AG AG AG AG AG AG AG			