Ţ		
ÅG	AG AG AG AG AG AG	<u></u>
Cod	e No: 133BQ R16	
	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD	
	B.Tech II Year I Semester Examinations, November/December - 2018 SIGNALS AND STOCHASTIC PROCESS	
	e: 3 Hours Max. Marks: 75	L
Note	: This question paper contains two parts A and B.	
	Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit.	
	Each question carries 10 marks and may have a h c as sub questions	
ÅG	AGA AGA AGA AGA AGA AGA Marks)	
(1.a)	Is the system described by the equation $y(t) = x(2t)$ time invariant or not? Why? [2]	
b)	Give the relation between bandwidth and Rise time of a signal. [3]	
c)	What are the effects of aliasing and how can you minimize the aliasing error? [2]	A
\wedge \bigcirc d)	Distinguish between series and transform in the Fourier Representation of a signal.[3]	\angle
/ (e)	Let $x(s) \neq L(x(t))$, determine the initial value, $x(0)$ and the final value $x(\infty)$, for the	/
	following signal using initial value and final value theorems. [2]	
	$x(s) = \frac{7s+6}{s(3s+5)}$	
f)	How the stability of a system can be found in Z-Transform and what is the condition for	
	consolity in terms of 7 Transform	Λ
$A = \begin{pmatrix} -1 & g \end{pmatrix}$	Prove that $R_{xy}(\tau) = R_{yx}(-\tau)$. If the customers arrive at a bank according to a Poisson process with mean rate 2 per	-/-
h)	If the customers arrive at a bank according to a Poisson process with mean rate 2 per	
i)	minute, find the probability that during a 1-minute interval no customer arrives. [3] Prove that the power spectral density of a real random process is an even function. [2]	
(i	Find the auto correlation function, whose spectral density is: [3]	
	$\sigma(\alpha) = \int \pi$, $ \omega \le 1$	
	$^{S}(\omega) = 0$, otherwise $\wedge \cap \wedge $	
	$s(\omega) = \begin{cases} \pi, & \omega \le 1 \\ 0, & \text{otherwise} \end{cases}$ $PART^{4}B \qquad (50 \text{ Marks})$	
	(50 Marks)	
2.a)	Prove that the set $sin mw_0 t$ and $sin nw_0 t$ are orthogonal for $m \neq n$, where	
	$m = 0.12$ ∞ and $n = 0.12$ ∞ over to $t + \frac{2\pi}{t}$	
/─\\b)	m = 0,1,2 ∞ and n = 0,1,2 ∞ , over to, $t_0 + \frac{2\pi}{\omega_0}$. Explain the concepts of unit step function and Signum function. [5+5] OR	/
3.a)	Explain causality and physical reliability of a system and explain raley-wiener effection.	
b)	Consider a stable LTI system characterized by the differential equation:	
	$\frac{dy(t)}{dt} + 2y(t) = x(t).$ Find its impulse response. [5+5]	
	u	/
	AG AG AG AG AG	/
• • •		

