AG AG AG AG AG AG AG A

	Code No: 134CF	
	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD	
AG	B.Tech II Year II Semester Examinations, April - 2018 SWITCHING THEORY AND LOGIC DESIGN (Common to EEE, ECE, MCT) Max. Marks: 75	/
AG	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.	_
	1.a) What is self complementing code? Give example. (25 Marks) [2]	
	b) State and Prove Demorgan's theorem. [3]	
AG	c) What are Hazards? List their types. [2] d) Design 2 × 1 Multiplexer with neat logic diagram. [3] e) Write the characteristic table of JK Flip flop. [2] f) Draw the logic diagram of Master-Slave D flip flop. Use NAND gates. [3] g) What is switch tail ring counter? [2] h) What is a Ring Counter? What are applications of Ring counters? [3]	_
	i) What is an ASM Block? [2]j) Define merger graph of n-state machine M. [3]	
AG	2.a) i) Convert the given Octal number (2564. 603) ₈ to Hexadecimal Number. ii) Given that (81) ₁₀ = (100) _b , Find the value of b. b) Encode data bits 1101 into 7 bit even parity Hamming Code. [5+5]	_
	OR 3.a) Prove that $AB'C + B + BD' + ABD' + A'C = B + C$.	
AG	b) Simplify the following expression F = AB'+ABD+ABD'+A'C'D'+A'BC' and implement with NAND gates.	_
	4.a) Design a code converter that converts BCD messages into Excess-3 code. The converter has four input lines carrying signals labeled w, x, y and z and four	
	output lines carrying signals f1, f2, f3, and f4.	
AG	b) Simplify the following Boolean expression using K- map and implement them with NOR logic gates $F(A,B,C,D) \neq \Sigma$ in $(-1,3,7,11,15) + d(0,2,5)$ OR	<u>/</u>
	5.a) Design and explain 3 to 8 decoder with necessary truth table and logic diagram.	
	b) Write short notes on Hazards and Hazard free relations. [5+5]	
AG	AG AG AG AG AG /	Δ