JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December-2014 SWITCHING THEORY AND LOGIC DESIGN

	(Common to ECE, EIE)	
Time	: 3 Hours Max	. Marks: 75
Note:	This question paper contains two parts A and B.	
	Part A is compulsory which carries 25 marks. Answer all questions in	Part A
	Part B consists of 5 Units. Answer any one full question from ea	
	Each question carries 10 marks and may have a, b, c as sub questions.	ton time.
	Each question earlies to marks and may have a, b, c as sub questions.	
	Part- A	(25 Marks)
	Tare A	(23 Mai ks)
1.a)	What do you mean by self complementing codes. Give two examples.	[2M]
b)	State and prove consensus theorem.	[3M]
c)	What is a standard POS form?	[3M]
d)	How does the look-ahead-carry adder speed up the addition process? V	
u)	adders are slower than parallel adders?	-
e)	What are preset and clear inputs?	[3M]
		[2M]
f)	Distinguish between combinational and sequential switching circuits.	[3M]
g)	What are the applications of counters?	[2M]
h)	What is a twisted ring counter?	[3M]
i)	What is a Mealy machine?	[2M]
j)	What is a merger graph?	[3M]
	Part-B	(50 Marks)
2.a)	What is Hamming code? How is the Hamming code word tested and c	orrected?
b)	Perform the decimal addition of 679.6 ± 536.8 in the 8421 code.	
	OR	
3.a)	Obtain the duals of the following functions:	
	i) $\overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ}$	
	ii) $\overline{ABC} + ABC + ABC + ABC$	
b)	Realize XOR function using AOI logic and NAND logic.	
0)	Reutize Note function using Not logic and William logic.	
4.a)	Realize a full adder using only 2-input NAND gates.	
b)	Implement the following logic function using an 8:1 MUX.	
/	$F(x, y, z) = \sum m(0, 2, 3, 5)$	
	OR	
5.a)	Minimize the following multiple output functions using K-maps.	
5.47	$f_1 = \sum m(0, 2, 6, 10, 11, 12, 13) + d(3, 4, 5, 14, 15)$,
	$f_2 = \sum m(1, 2, 6, 7, 8, 13, 14, 15) + d(3, 5, 12).$	(
b)	Drop: the levie discrept of a 1 line to 1 line demolting or and	overeleding its
0)	Draw the logic diagram of a 1-line to 4-line demultiplexer and	expraire its
	working.	
6.a)	Draw the logic diguram of a master class IV flin flow point XANS	Low sates (
υ.α)	Draw the logic diagram of a master slave JK flip flop using NANf	z gares a ru
5)	explain its truth table.	
b)	Define the following terms as applied to flip flops.	
	(i) Set-up time, (ii) Hold time, (iii) Propagation delay tim	IC.
7	OR	
7.a)	Explain the conversion of SR flip flop to JK flip flep	

b) Obtain the characteristic equations of SR and JK flip flops.

- 8.a) Draw the diagram of mod-10 Asynchronous counter using T-flip flops and explain its working.
 - b) Draw the logic diagram of a 4-bit ring counter using JK flip flops and explain its working.

OR

- 9. Design a Synchronous modulo-6 gray code counter using T-flip flops.
- 10.a) What is a Merger graph?
 - b) Draw the Merger graph and obtain the set of maximal compatibles for the incompletely specified sequential machine whose state table is given in Table 1.

PS	NS, Z	
	I_1	I_2
A	E, 0	D, 1
В	F, 0	D, 0
С	· E, —	B, 1
D	F, 1	B, 0
Е	C, 1	F, 1
· F '	D, -	C, 0

OR

- 11.a) Draw the ASM chart of a Binary multiplier.
 - b) Obtain the control subsystem of a binary multiplier using logic gates.