R13

Code No: 113BY

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, December-2014 ELECTROMAGNETIC FIELDS

(Electrical and Electronics Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	Part- A	(25 Marks)
1.a)	Describe what are the source of electric field and magnetic fields?	[2M]
b)	What are the limitations of Gauss's Law?	[3M]
c)	What are the boundary conditions of dielectrics?	[2M]
d)	Define Polarization.	[3M]
e)	State Biot-Savart's Law.	[2M]
f)	Write the point form of Amperes circuit law.	[3M]
g)	What is the difference between scalar and vector magnetic potential?	[2M]
h)	What is the expression for the torque experienced by a current carrying loop,	
	placed in a magnetic field?	[3M]
i)	Define dynamically induced e.m.f.	[2M]
j)	Give the Maxwell's equation – IV in both integral form and point form	n. [3M]
	Part-B	(50 Marks)
2.a)	Find the total electric field at the origin due to 10 ⁻⁸ C charge at P(0	0,4,4)m and

- 2.a) Find the total electric field at the origin due to 10^{-8} C charge at P(0,4,4)m and -0.5×10^{-8} C charge at P(4, 0, 2)m.
- b) Find the electric field intensity of a straight uniformly charged wire of length 'L'm and having a linear charge density of +q C/m at any point at a distance of 'h' m. Hence deduce the expression for infinitely long conductor.

OR

- 3.a) Find the electric field intensity produced by a point charge distribution at P(1, 1, 1) caused by four identical 3nC point charges located at P1(1, 1, 0), P2(-1, 1, 0), P3(-1, -1, 0) and P4(1, -1, 0).
 - b) A circular disc of radius 'a' m is charged with a charge density of σ C/m². Find the electric field intensity at a point 'h'm from the disc along its axis.
- 4. Obtain an expression for Ohm's law in point form and integral form.

OF

- 5. Drive an expression for energy stored and energy density in an Electrostatic field.
- 6. Derive the expression for H due to finite length wire carrying a steady current I.

OR

7. Obtain the expression for H at any point on the axis of circular loop carrying current I and deduce H in the center of the circular loop.

- 8.a) Explain the characteristics and applications of permanent magnets.
 - b) Obtain an expression for self inductance of a solenoid.

OR

- 9.a) Derive an expression for force between two straight parallel current carrying conductors.
- b) Obtain an expression for Lorentz force equation.
- 10. State and explain Faraday's Laws of electromagnetic induction.

OR

11. Derive the expression for displacement current density.

---00000---