Code	No: 133AP \bigcirc	,
A A Second	B.Tech II Year I Semester Examinations, November/December - 2018	,
	ELECTROMAGNETIC FIELDS (Electrical and Electronics Engineering)	
Time	: 3 Hours Max. Marks: 75	
A Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.	/
	PART- A	
(1.a) (b) (c) (d)	Define electro static field and mention any two sources. Find the potential at $R_A = 5m$ with respect to $R_B = 15m$ due to point change $Q = 500 \mu c$ at the original and zero reference at infinity. What are Conductors and Insulators? Give examples. Derive Ohm' law in point form. [2] [3]	/
e)	Deduce the Relation between magnetic flux, magnetic flux density. [2]	
f) g) h) i) j)	Find the magnetic field intensity due to a current carrying conductor with finite length: Explain Lorentz force equation. Derive Neuman's formula for mutual inductance. State Faraday's law of electromagnetic induction. Determine the e.m.f induced about the path r=0.5, z=0, t=0. If B=0.01sin377t. [3] [2] [3] [3] [3] [3] [3] [3]	/
	PART-B	
△ (Three equal positive charges of 4×10 coulomb each are located at three corners of a square, side 20cm. determine the electric field intensity at the vacant corner point of	/
(2.a)	Three equal positive charges of 4×10° coulomb each are located at three corners of a square, side 20cm. determine the electric field intensity at the vacant corner point of the square. State and explain Maxwell's first law. [5+5]	/
	Three equal positive charges of 4×10 coulomb each are located at three corners of a square, side 20cm. determine the electric field intensity at the vacant corner point of the square.	/
b) 3.a)	Three equal positive charges of 4×10° coulomb each are located at three corners of a square, side 20cm. determine the electric field intensity at the vacant corner point of the square. State and explain Maxwell's first law. [5+5] OR What is an electric dipole? Obtain expression for torque experienced by an electric dipole in a uniform electric field. Derive the expression for Potential gradient. Derive the expression for the energy stored in the charged condenser. The capacitance of a parallel plate condenser is 0.2μF. Potential difference between the plates is 2V. Calculate the energy stored by the charged condenser. [5+5]	/
b) 3.a) b) 4.a)	Three equal positive charges of 4×10^{-9} coulomb each are located at three corners of a square, side 20cm. determine the electric field intensity at the vacant corner point of the square. State and explain Maxwell's first law. [5+5] OR What is an electric dipole? Obtain expression for torque experienced by an electric dipole in a uniform electric field. Derive the expression for Potential gradient. [5+5] Derive the expression for the energy stored in the charged condenser. The capacitance of a parallel plate condenser is 0.2μ F. Potential difference between	/
b) 3.a) 4.a) b)	Three equal positive charges of 4×10° coulomb each are located at three corners of a square, side 20cm. determine the electric field intensity at the vacant corner point of the square. State and explain Maxwell's first law. [5+5] OR What is an electric dipole? Obtain expression for torque experienced by an electric dipole in a uniform electric field. Derive the expression for Potential gradient. [5+5] Derive the expression for the energy stored in the charged condenser. The capacitance of a parallel plate condenser is 0.2µF. Potential difference between the plates is 2V. Calculate the energy stored by the charged condenser. [5+5] OR	/

(

Γ

٦

