_Code	No: 153AR JAWAHARLAL B,Tech	II Year I Sen	ester Examinat	ions, October - FIELDS	R18 HYDERABAI 2020	AG.	
		(Electrical a	nd Electronics E	igineering)	Max. Marks:	75	
Time:	2 hours	All ques	er any five ques tions carry equa	l marks	AG	AG	
1.a) b)	Solve the electric Three point charge equilateral triangle	ges 3, 4, 5 could e with side 5 co	n. Calculate the	energy density v	vithin the triangle		
△(2.a) b)	Derive the expression for Electric Potential at anypoint due to a point charge located at the origin. Point charges of 50 nC each are located at A(1,0,0), B(-1,0,0),C(0,1,0) and D(0,-1,0) in free space. Determine the total force on the charge at A. [8+7]						
3.	Derive the boundary conditions for (i) Dielectric-Dielectric interface (ii) Conductor- [15] Dielectric interface.						
△(4.a) b)	- \						
5.a) b) 6.a) b)	b) Evaluate H everywhere for an infinitely long coaxial transmission placed along z-axis which carries current along az. Sketch magnitude of H as a function of current. 6.a) Obtain the relation between Magnetic vector potential and Magnetic flux density. [8+7]						
free space, Evaluate E and H. Explain the Faradays laws of electromagnetic induction A uniform plane wave at a frequency of 1 GHz is travelling in a large block of dielectric with $\epsilon_r = 55$, $\mu_r = 1$ and $\sigma = 0.05$ S/m. Determine γ , η , β and λ . [8+7]							
ы ДС	A C			AG	AG	AG	
Д С	ÀG.	AG	AG	AG	AG	AG	

(

1