

An AUTONOMOUS Institution

ACE-R20

Question Paper Code:

ME203ES

Semester End Examination

I B. Tech- II Semester- September /October 2021

Engineering Mechanics (common to CIVIL, MECH)

Time: 3 Hours Max. Marks: 70

Answer any five full questions from the following. All Questions carry equal marks.

M=Marks; CO=Course Outcomes; PO= Program Outcomes

Q.No	Question	M	CO	PO
1. a)		7	1	1,2
	self weight of cable, determine the tension in segments AP, PQ, and QD. Also			
	determine the value of β and x .			
	" Engineering College			
	4 m B 4 m C x m			
	βD			
	2.3 m			
	2.5 111			
	P			
	3 kN 7 kN			
b)	A cylindrical wooden log of 1200kg is kept within inclined planes, which are mutually perpendicular as shown in figure. Considering contact surface smooth, determine the forces of reaction.	7	1	1,2
	1200 kg Q			

2. a)	a right circular roller of weight 650 N rests on a smooth horizontal floor and is kept in position with a string. Determine the tension in the string and floor reaction if there is a pull of 213 N	7	1	1,2
	650 N			
b)	A 2 m X 4 m plate is subjected to a system of two coplanar forces as shown in figure. Determine the equivalent action at centroid of the plate that may replace the force system.	7	1	1,2,3
	3 kN 60° 4 m 2 m • G 45° 6 kN			
3. a)	Using direct integration method, determine the coordinates of the centroid of quarter of an ellipse $x^2/a^2 + y^2/b^2 = 1$.	7	2	1,2
	$b = \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $0 = \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$			

b)	With neat sketches explain the frictional phenomena associated with the working principle of differential jack.	7	2	1,2
4. a)	Determine the least value of P to cause motion to impend rightwards. Assume the pulley frictionless and coefficient of friction of all contiguous surfaces is 0.2.	7	2	1,2,1
b)	An isosceles triangle ABE is to be cut from a square ABCD of side a. Determine the altitude h of this triangle, so that its vertex E will be the centroid of the shaded area.	7	2	1,2,1
5. a)	Compute the second moment of the area of the bearing block with respect to its base.	7	3	1,3

h	Determine the mass moment of intertia of a rectanglular plate shown in figure with	7	3	1,2
b)	respect to centroidal axis. Take mass density as ρ .			
	<i>A</i> Gy			
	1 **			
	b $G \longrightarrow Gx$			
6.	Two blocks A and B are connected as shown. When the motion begins the block B	14	3	2,3,4
	is in 1m above the floor. Assuming the pulley to be frictionless and weightless, determine			
	a) The velocity of the block A when the block B touches the floor.b) How far the block A will move up the plane.			
	b) How far the block A will move up the plane.			
	B 240N			
	And 2001 2			
	1m			
	30° FLOOR ¥			
7. a)	A bar of 4m long and of small cross section rotates in a horizontal plane about a vertical axis through one end. It accelerates uniformly from 600 rev/min to 900	7	4	1,2,3
	rev/min in an interval of 5 seconds. What are the normal and tangential components of acceleration of the mid points of bar 4 seconds after acceleration			
	begins.			
b)	A railway car is moving with a velocity of 20m/s. The diameter of the wheel is 1m. The wheel is running on a straight rail without slipping. Find the velocity of	7	4	1,2
	the point on the circumference at 60° in the clockwise direction from the top at			
	any instant.			
8. a)	A ball thrown vertically upward at 20 m/s from a window 50 m above the ground.	7	5	1,3
,	Determine the (i) Maximum rise of the ball from ground, and (ii) time and velocity of the ball hitting the ground.			
		1	1	