AG	/	4G	AG	AG	AG	AG	AG R18	A
AG		No: 153AW JAWAHAR J 3 hours	3.Tech II Year ENC (Electr	TECHNOLOGICAL Semester Examples of the ERING Mical and Electron Answer any five questions carry	ninations, Marc ECHANICS ics Engineering) questions	A manage		A
AG	1.a) b)	Forces of m	agnitude 15, 25 agon towards its	coplanar forces? , 35, 45, 55 and regular corner p	65kN respective	ely act from the magnitude and d	centre of a irections of [7+8]	Д
AG	2.a) b)	A screw Ja friction betw lever one m	ck has a mean veen screw and e etre long to raise	diameter of 60n nut is 0.1. Find the a load of 20kN	nm and pitch of ne magnitude req and also efficien	about their existers. The coursed at the end of the serew J	of operating	А
	3.a) b)	State the Pa Determine t mm.	ppus theorem ar he Centroid of t	d explain its app he composite sec	lications.	gure. All dimens	ions are in [7+8]	
AG	-	AG	*	AC	AG	79	AG	Д
			¥	-100-		0->		
AG	4.a) b)	A triangula	r lamina of sid side is on the g	m used in mome es 100mm, 80m ground. Find the	m and 60mm is	s placed in such rtia of the triang	a way that gular lamina [8+7]	A
AG	5.a) b)	/What is the	e between secon e efficiency of efficiency?	screw jack and	rtia and mass moderive an equati	oment of inertia.	ondition for (7+8)	A
	6.a) b)	An automo	Alembert's princ bile is driven at for 500 sec. Wh	16m/sec for 800	sec, then at 20 m speed over the er	n/sec for 1300 sentire travel?	c and finally [7+8]	
AC	Į	AG	AG	AG	AG	AG	AG	A

AG	AG	AG	ACi	ACI	A(J	AU	1
7.a b	A hammer the hammer for penetrat Two bodies string whic	work-energy print of mass 500kg for drives the pile lation. s of weights 50N h passes over a sefficient of friction he plane is 16°,	and 30N are commooth pulley. The	nected to the two ne weight 50N is weight 30N is h	ends of a light in placed on a rouganging free in the	[7+8] nextensible gh inclined e air. If the	A
AG	AG	AG	A-00000	- AG	AG	AG	A
AG	AG	AG	AG	AC	AG	AG	A
AG	AG	AG	AC	AG	AG	AG	A
AG	AG	AG	AC	AG	AG	AG	A
AG	AG	AG	AG	AG	AG	AG	A

AG AG AG AG AG AG AG