AG	AG	AG	AG	AG	AG	<u> A</u> G	_
AG		RLAL NEHRU B.Tech I Year	i Semester Ex	OGICAL UNIVERSAL UNIVERSAL UNIVERSAL MATICS-I SELE, IT MCT, 1	y/June - 2019 MMT, AE, MII		A
AG	carries 10	sists of 5 Units.	which carries Answer any contact and the conta	25 marks. Answone full question ub questions.	ver all question from each unit.	ns in Part A. Each question	A
				and A^{-1} are also orthough $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.		[2]	Λ
AG.	d) State Rolle' e) State Euler' f) State the co i) unique so g) Prove that the	s theorem. s theorem for ho onditions when the dution ii) Infinite the Eigen values of z test.	mogeneous fur the system of no of solution of a skew-Herr	nction in x and y. non homogenous s iii) No solution nitian matrix are	s equations AX 1. purely imaginar	[2] [2] [2] =B will have	<u> </u>
		(v), if $u = x + y - (v)$					A
	Solve the system elimination m	em of equations ethod.	$ \begin{array}{c} OR \\ x + 2z = 4 \end{array} $		5, x + y + z = 1	[10] using Gauss [10]	
4. AG /	Find Eigen val	ues and Eigen v	ectors of $\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 & -1 \\ 1 & -2 \\ -2 & 1 \end{bmatrix}$	AG	[10] AG	A

AG AG AG AG AG AG A