| AG | AG | AG | AG | AG | AG | <u> A</u> G | _ | |------------|--|--|--|--|---|-----------------------------------|----------| | AG | | RLAL NEHRU
B.Tech I Year | i Semester Ex | OGICAL UNIVERSAL UNIVERSAL UNIVERSAL MATICS-I SELE, IT MCT, 1 | y/June - 2019
MMT, AE, MII | | A | | AG | carries 10 | sists of 5 Units. | which carries Answer any contact and the conta | 25 marks. Answone full question ub questions. | ver all question from each unit. | ns in Part A. Each question | A | | | | | | and A^{-1} are also orthough $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. | | [2] | Λ | | AG. | d) State Rolle' e) State Euler' f) State the co i) unique so g) Prove that the | s theorem. s theorem for ho onditions when the dution ii) Infinite the Eigen values of z test. | mogeneous fur
the system of
no of solution
of a skew-Herr | nction in x and y. non homogenous s iii) No solution nitian matrix are | s equations AX
1.
purely imaginar | [2]
[2]
[2]
=B will have | <u> </u> | | | | (v), if $u = x + y - (v)$ | | | | | A | | | Solve the system elimination m | em of equations ethod. | $ \begin{array}{c} OR \\ x + 2z = 4 \end{array} $ | | 5, x + y + z = 1 | [10]
using Gauss
[10] | | | 4.
AG / | Find Eigen val | ues and Eigen v | ectors of $\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$ | $\begin{bmatrix} 1 & -1 \\ 1 & -2 \\ -2 & 1 \end{bmatrix}$ | AG | [10]
AG | A | AG AG AG AG AG AG A