
AG	AG AG AG AG AG AG	P
	Code No: 132AB	
	JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, August/September - 2017	
	MATHEMATICS-II	
AG	Time: 3 hours (Common to EEE, ECE, CSE, EIE, IT) (Max. Marks: 75)	/
/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A.	,
	Part B consists of 5 Units. Answer any one full question from each unit.	
	Each question carries 10 marks and may have a, b, c as sub questions.	
AG	AGAGAGAGAGAG	/
	1.a) Find $L^{-1}\left(\frac{1}{s^2 - 2s + 5}\right)$ [2]	
	b) Let $L\{f(t)\} = \bar{f}(s)$. Prove that $L\{f(at)\} = \frac{1}{f}(\frac{s}{s})$. [3]	
10	c) Define Gamma function. \triangle	Ź
		<i></i>
	d) Evaluate $\int_{0}^{\infty} Sin^{3}xCos^{5}xdx$ using Beta and Gamma function. [3]	
	e) Evaluate $\int_{0}^{1} \int_{2}^{3} \int_{2}^{4} (x+y+z) dx dy dz$ [2]	
	f) \(\text{Find the area of the circle using double integral} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	£
	g) Give short note on gradient of a scalar point function [2] h) Find the scalar potential function of an irrotational vector $\vec{f} = x\vec{i} + y\vec{j} + z\vec{k}$ [3]	/
	i) Evaluate $\int xdx + ydy + zdz$ where C is a circle $x^2 + y^2 = 1$ in xy - plan. [2]	
	j) Apply Gauss divergence theorem to evaluate $\iint x dy dz + y dz dx + z dx dy$ over the	
$\Lambda \subset$	surface of the sphere of radius /a' units:	
		/
	PART-B (50 Marks)	
10	2.a) Find Laplace transform of $\frac{1-e'}{\sqrt{s^2+1}^2}$.	/
トノノ	b) Find the inverse Laplace transform of $\frac{1}{(2+1)^2}$. [5+5]	/
	OR	
	3.a) Solve $y'' + 4y = 0$, $y(0) = 1$, $y'(0) = 6$ using Laplace transform.	
A	b) Solve the integral equation $f(t) = at + \int_{0}^{t} f(u)\sin(t-u)du$, $t > 0$.	
	DA DA DA DA DA DA	/

